
The PCI Compliant
Database.

Christophe Pettus
PostgreSQL Experts, Inc.

PGCon 2016

Greetings!

• Christophe Pettus

• CEO, PostgreSQL Experts, Inc.

• thebuild.com — personal blog.

• pgexperts.com — company website.

• Twitter @Xof

• christophe.pettus@pgexperts.com

mailto:christophe.pettus@pgexperts.com
mailto:christophe.pettus@pgexperts.com

So, “PCI”?

• PCI is the Payment Card Industry Security
Standards Council.

• Sets security standards for any system that
processes payment cards.

• What we’re really talking about is PCI-DSS,
the Data Security Standard.

• Most recent version: 3.1, April 2015.

Why do I care?

• You like getting paid, don’t you?

• Any site that touches payment card
information needs to comply with PCI.

• All of it. No exceptions.

• No really, that exception you think you
have? You don’t.

What does it mean to
“comply”?
• You know, that’s a really good question.

• To “comply” means that you have passed an
audit.

• Below a certain volume of transactions,
you can self-audit.

• But you still must comply with every part of
PCI, no matter what.

Who has to comply?

• Any site that ever processes a primary
account number (PAN).

• That’s that number on the front of your
credit card.

• Even if you don’t store it in a database, you
still have to comply.

So, if I comply, I’m safe,
right?
• No.

• Passing the audit just means you get to
play, not that you get to win.

• If you have a breach, having passed an audit
provides no protection whatsoever for
liability.

This talk.

• Today, let’s talk about getting a PostgreSQL
database PCI compliant.

• There’s a lot more involved in getting fully
PCI compliant.

• But PCI compliance is a good jumping-off
point for general system security.

Read the Documentation.

• Be sure to get and read a copy of PCI-DSS.

• There’s no way to go through all the ins
and outs in one talk.

• This focuses on technical matters, as
related to a database…

• … but the policies and procedures are also
very important.

Caveat Lector.

• This is the absolute minimum you need to
do for PCI compliance.

• By itself, it does not necessarily mean you
will pass an audit.

• Think of this as the start of your security
journey, not the end!

PCI Structure

• PCI-DSS 3.1 has six areas, with a total of
twelve requirements.

• Each one of which has implications for a
PostgreSQL system.

• Let’s go through each requirement, he said!
It’ll be fun, he said!

Requirement 1: Firewalls.

• “Install and maintain a firewall configuration
to protect cardholder data.”

• In general, this section requires that a
server only offers the absolute minimum
level of service necessary.

• So, no IRC server on the PostgreSQL
box, OK?

Requirement 1: Firewalls.

• PostgreSQL server is running PostgreSQL,
and just that.

• Only port 5432 is available.

• Plus mandatory management ports.

• Port 5432 is restricted to only application
servers that must talk to the database, by
specific IP address.

Requirement 1: Firewalls.

• Use pg_hba.conf to restrict traffic to
authorized IPs, with mandatory SSL
connections.

• Use iptables (or your favorite) to
additionally restrict incoming services.

Requirement 1: Firewalls.

• Do not allow direct public logins via SSH to
the database host. Require a hop through a
specific bastion host.

• Restrict access to the bastion host by VPN;
do not simply trust bare SSH (even on a
nonstandard port).

• Everyone tries 2222 now. C’mon.

Requirement 2:
Security Policies.
• “Do not use vendor-supplied defaults for

system passwords and other security
parameters.”

• Well, doh, right?

Speedbird-8:~ postgres$ psql postgres

psql (9.5.3)

Type "help" for help.

postgres=#

Oh, look: a vendor-supplied
default.

Requirement 2:
Security Policies.
• There is no such thing as “trust” mode

authentication. Forget it ever existed.

• Always require specific users, even
superusers.

• Do not use the postgres Unix or database
user. Require specific users.

• LDAP is your “friend,” here.

Requirement 2:
Security Policies.
• For system administration, use specific

users and sudo; never, ever allow root
logins.

• Use a password manager. Always always
always.

• For critical passwords, use split passwords
with dual custody.

Requirement 2:
Security Policies.
• Versions of TLS below 1.2 don’t exist

anymore.

• This includes your public-facing website!

• You have until June 2016. Get on it.

Requirement 2:
Security Policies.
• Always subscribe to the pgsql-announce

list.

• Always immediately apply any security-
related updates.

• Also subscribe to the appropriate security
list for your platform.

• Keep up to date with patches, already!

Requirement 2:
Security Policies.
• Make it someone’s job.

• Make sure they do it.

• Never, ever allow a critical security patch
to go unheeded.

• Ever ever ever.

Requirement 3:
Data Security.
• “Protect stored cardholder data.”

• At last! What we’re here for!

Requirement 3:
Data Security.
• “No problem! We’ve layered luks on top of

lvm on top of EBS, and we’re all set!”

• No.

• Full disk encryption is useless.

• Let me say that again.

FULL DISK ENCRYPTION IS USELESS.

FDE protects you against
exactly one problem…
• … theft of the media.

• That’s it.

• That is about 0.00000002% of the actual
intrusions that you have to worry about.

• Easy rule: If psql can read it in cleartext, it’s
not secure.

Per-Column Encryption.

• Always encrypt specific columns, not entire
database or disk.

• Better performance, higher security.

• Key management is a pain.

• Automatic restart in a high-security
environment is essentially impossible.

• Assume a human will be in the loop.

Primary Account Number.

• Of course, the PAN must be encrypted.

• Algorithm must be a well-known secure
one (AES is considered the standard).

• Never roll your own crypto.

• Keys cannot be baked into code or stored
in repositories.

Masked Number.

• It’s OK to retain the first six and last four
of the PAN for display purposes.

• (Really, just keep the last four and card
type.)

• You can also store a hash of the card
number for indexing purposes, BUT:

Be careful with hashes!

• It’s very easy to reverse some hashes if you
have the masked number!

• Only store four digits, and use a very
strong hash like SHA-512.

So, how about pgcrypto?

• pgcrypto is a /contrib module that contains
cryptography functions.

• Why not use it to encrypt the PAN?

• I mean, it’s just sitting there, right?

INSERT INTO super_secret_table(card)

 VALUES(
 pgp_sym_encrypt(‘4111111111111111’,

 ‘mysuperpassword’));

2016-05-19 10:40:42.524 PDT,"xof","xof",
99245,"[local]",573dfa20.183ad,9,"INSERT",
2016-05-19 10:38:40 PDT,2/0,0,LOG,
00000,"duration: 1.712 ms statement: INSERT
INTO super_secret_table(card)
VALUES(pgp_sym_encrypt('4111111111111111',
'mysuperpassword'));",,,,,,,,,"psql"

Not so great.

• PostgreSQL’s text logs could expose the
PAN.

• That’s another hop the data has to take in
cleartext form.

• Always do the encryption in the
application, not in the database.

CREATE TABLE cardinfo(

 id uuid primary key,

 card_type card_types not null,

 masked_card char(4) not null,

 card_hash varchar(1024) not null,

 enc_pan bytea not null,

 enc_cvv bytea not null,

 expiration_date date not null

);

What’s wrong with this
schema?
• Everything’s OK except…

• You cannot store the CVV.

• No, you cannot store it at all.

• Not even encrypted.

Well, OK, you can store it...

• ... for as long as the authorization takes.

• OK, we’ll just store it, process the
authorization, and clear it out. No problem!

• So, about that PostgreSQL secondary...

• ... with all of those WAL logs backed up?

No storage means “no
storage.”
• Not in WAL segments.

• Not in backups.

• Not in text logs.

• Even in encrypted form.

• Ever.

• Just don’t write it to the database.

Requirement 4:
Encrypt Data in Flight.
• “Encrypt transmission of cardholder data

across open, public networks.”

• Goodness gracious, I hope you are doing
this.

• Generally, we’re entering an TLS-
everywhere world, so go with that.

• Remember, no SSL or TLS 1.0-1.1 anymore.

Use “SSL” for PostgreSQL.

• Require SSL connections to PostgreSQL.

• If you are using pgbouncer, use stunnel to
get SSL.

• Ideally, use proper certificate management.

Requirement 5:
Protect Against Malware.
• “Protect all systems against malware and

regularly update anti-virus software or
programs.”

• Specifically work machines accessing the
database.

• This is generally how large-scale data
thefts happen.

Requirement 6:
Be a Grownup.
• “Develop and maintain secure systems and

applications.”

• Document your system administration
procedures. Do security code reviews and
audits. Make sure your deployment
procedures are solid.

Requirement 6.5.1:
SQL Injection Attacks.
• Always use proper parameter substitution

in your library!

• Never build SQL by text substitution unless
it is absolutely necessary (for example,
variable table names).

• All user input is hostile and wants to kill
you all the time.

Requirement 7: Restrict
Data by Need-to-Know.
• “Restrict access to cardholder data by

business need to know.”

This means…

• … don’t give every developer production
system access.

• … identify and qualify the system
administrators who need global system
access.

• … scrub data that comes out of production
for development testing.

Requirement 8: Passwords,
yur doin it rong.
• “Identify and authenticate access to system

components.”

User accounts must be…

• … associated with a particular human
being, not a role.

• … locked out after (no more than) six
attempts.

• … immediately revoked for terminated
users.

All relevant system
passwords must be…
• … complex (and this needs to be

enforced, not just policy).

• … changed every 90 days.

• … encrypted in transmission.

• … not the same as one of the last four on
that account.

Two-Factor Authentication
is now required!
• Two of these three:

• Password or passphrase.

• Physical device or smartphone app.

• Biometric device.

Sessions must be…

• … logged, including user activity during the
session.

• … terminated after being idle 15 minutes.

For PostgreSQL…

• … make sure each user has their own
unique account.

• … log all connections and disconnections.

• … log all activity by directly-connecting
users (as opposed to the application).

• … do not permit logins as the postgres
superuser.

Requirement 9:
The Glass House.
• “Restrict physical access to cardholder

data.”

• This means real security (access control,
video, mantrap, biometrics) on your server
room.

• Make sure your cloud provider provides
this for the cloud they are providing to you!

Requirement 10:
Log Everything.
• “Track and monitor all access to network

resources and cardholder data.”

• Make sure everything is logged, and those
logs are kept secure and cannot be
tampered with. (rsyslog, etc.)

• Make sure that the log record can be
traced back to an individual person.

BUT!

• You cannot log primary account numbers
or CVVs in cleartext.

• This is another good reason to encrypt in
the application, not in the database.

Requirement 11:
Trust, but Verify.
• “Regularly test security systems and

processes.”

• Hire external penetration testing firms.
Encourage developers to poke at security.

• Hire PCI audit companies that actually
understand security, not just run pen test
scripts.

This actually happened.

• “We need you to disable your firewall.”

• “Um, why?”

• “Our penetration test script is failing
because the firewall won’t let it through.”

• “This… sounds kind of like what a
firewall is supposed to do, to me.”

Requirement 12:
Write That Down.
• “Maintain a policy that addresses

information security for all personnel.”

• Make sure all security procedures are
documented, policies set, and do proper
risk assessment.

• You should be doing this for your database
anyway.

Appendix B: The Bargaining
Stage of Grief
• What if you simply can’t comply?

• Appendix B allows you to write up a
“compensating control.”

• In effect: “We can’t do exactly what the
standard says, but we can do this, which is
just as good.”

Such as?

• For example, it may not be practical to
manage root login using LDAP.

• In that case, you can block root login and
use sudo instead.

• (This is an example in the PCI-DSS
standard.)

This is not a Get-Out-of-
Jail-Free Card.
• If you don’t need an external auditor, it’s

between you, your conscience, and your
Errors and Omissions insurance provider.

• External auditors have to sign off on
compensating controls.

• Compensating controls need to be just as
secure as the requirement they replace, in
your particular environment.

By now, you are probably…

We’re doomed.

• Full and correct PCI compliance is a lot of
work.

• There’s a huge downside risk.

• If there’s a breach, you could be liable for
every single penny of loss suffered by the
banks and consumers.

• Wait, you thought banks took risk? Ha.

There’s Hope.

There’s hope.

• If you don’t have to touch PANs, you can
avoid (much of) PCI.

• First steps were services like PayPal, but
not suitable for many environments.

• We’re finally getting a better solution:

• Tokenization.

Tokenization.

• Replaces the PAN with a token.

• The token is not considered a PAN, so
(most of) PCI does not apply…

• … as long as you never store the PAN,
even temporarily.

• Transfers the PCI headache onto the
tokenization API vendor.

Big Tokenization Gotcha.

• Some interfaces do not return the token
without an authorization attempt.

• So, you need to do the authorization
immediately, because if you store the PAN
back into the database (even for a short
time)…

• … you’re back to PCI-Compliance-Land.

Tokenization Gateways.

• Braintree, Stripe, Cybersource,
MasterCard…

• If you can integrate this into your system,
it’s much much better than dealing with
PCI.

• So you can move on to worrying about…

But that’s a different talk.

thebuild.com
pgexperts.com

Questions?

Christophe Pettus
@xof

thebuild.com
pgexperts.com

Thank you!

Christophe Pettus
@xof

