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Before Relational …

• Querying was physical

• Need to understand
physical organization

• Navigate query execution
by yourself
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DEPT
EMP

PROJ

“Which file is this table stored in?”

“How are records linked?”

“Which access path is fast for this table?”

“What is the best order of joining tables”

…

Historically …
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After Relational …

DEPT
EMP

PROJ

“Which file is this table stored in?”

“How are records linked?”

“Which access path is fast for this table?”

“What is the best order of joining tables”

…

• Querying is logical

• Physical organization is 
black-boxed

• Just declare what you want

Historically …



Fill the Gap: Physical and Logical
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SELECT * FROM DEPT D, EMP E

WHERE E.D_ID = D.ID AND ...

• Storage I/O strategy

• Access path selection

• Join method selection

• Aggregation, sorting

• Resource allocation

• ...

Query Optimizer



If optimizer perfectly fills the gap...
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We don’t need EXPLAIN 



Reality Is Tough

• Optimizer is NOT PERFECT
• Generated plans are not always optimal, sometimes 

far from optimal

• We have to take care of physical behavior

• That’s why EXPLAIN is so much explained
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Go Beyond EXPLAIN

• Deeper understanding of optimization, better 
control of your databases

• Theoretical fundamentals of query optimization
• From basic framework to cutting-edge technologies

• PostgreSQL Optimizer implementation
• Focusing on basic scan and join methods

• Behavior observation with TPC-H benchmark

2016/5/20 7



Outline

• Introduction

• Theory: Query Optimization Framework

• Code: PostgreSQL Optimizer

• Theory: Cutting-Edge Technologies Overview

• Summary
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Query Optimization Framework

• Cost-based optimization
• Plan selection with estimated execution cost

• Most of modern optimizers, including PostgreSQL, 
are cost-based

• Rule-based optimization
• Plan selection with heuristically ranked rules

• Easy to produce the same result

• Hard to evaluate wide variety of plans

• Ex) Oracle (~10g), Hive (~0.13)
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Main Challenges in Cost-based Optimization

• Cost modeling is HARD
• Overhead of CPU, I/O, memory access, network, …

• Cardinality estimation is HARD
• Output size of scans, joins, aggregations, …

• Join ordering search is HARD
• Combinatorial explosion of join ordering and access path

• Exhaustive search is NP-hard
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System-R optimizer (1979)

• “The standard”
• Cost estimation with I/O and CPU 

• Cardinality estimation with table statistics

• Bottom-up plan search

• Many of modern optimizers are “System-R style”
• PostgreSQL, MySQL, DB2, Oracle, ...
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Cost/Cardinality Estimation

• [#page fetched],[#storage API calls]
are estimated with cost formula and following 
statistics
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CPU costI/O cost

COST = [#page fetched] + W * [#storage API calls]

weight parameter

• NCARD(T) ... the cardinality of relation T
• TCARD(T) ... the number of pages in relation T
• ICARD(I) ... the number of distinct keys in index I
• NINDX(I) ... the number of pages in index I



Bottom-up Plan Search

• Candidate plans for single relation
• The cheapest access path

• N-relation join ordering search
• Select the cheapest plans for each relation

• Then, find optimal join orderings of every 2-relation join

• Then, find optimal join orderings of every 3-relation join
• ... until N-relation
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Ex) A ⨝ B ⨝ C ⨝ D



Ex) A ⨝ B ⨝ C ⨝ D



Ex) A ⨝ B ⨝ C ⨝ D



Ex) A ⨝ B ⨝ C ⨝ D



Ex) A ⨝ B ⨝ C ⨝ D



Volcano/Cascades (1993)

• Top-down transformational plan search
• Yet another optimization approach
• Not well known as “System-R style”, but widely used in 

practice
Ex) SQL Server, Apache Hive (Apache Calcite), Greenplum
Orca

• Extensible optimization framework
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Extensible Optimization Framework

Query Optimizer Generator

• Generalized expression of query plan not limited 
to relational data model

• Users (optimizer developers) defines actual 
implementations:
• Logical operator ... corresponds to relational algebra

• Physical algorithm ... corresponds to scan & join 
methods such as sequential scan, index scan, hash 
join, nested loop join
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Top-down Transformational Search

• Starts from an initial “logical plan”

• Generate alternative plans with:
A) Logical operator transformation
B) Physical algorithm selection
C) Enforcing sorting order
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Join Select T

Join

Select R Select S

Proj

Join

Select T

JoinSelect R

Select S

Proj

Change join ordering

Join Select T

Join

Select R

Select SProj

Projection push down

Example: 3-way join with projection



Top-down Transformational Search

• Starts from an initial “logical plan”

• Generate alternative plans with:
A) Logical operator transformation
B) Physical algorithm selection
C) Enforcing sorting order
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Join Select T

Join

Select R Select S

ProjExample: 3-way join with projection

HashJoin Select T

Join

SeqScan R SeqScan S

Proj

Join IdxScan T

Join

Select R Select S

Proj
…



Top-down Transformational Search

• Starts from an initial “logical plan”

• Generate alternative plans with:
A) Logical operator transformation
B) Physical algorithm selection
C) Enforcing sorting order
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Join Select T

Join

Select R Select S

Proj

Example: 3-way join with projection

Join Select T

Join

Sort Sort

Proj

Select R Select S

Enforce sorting order

merge join of R and S is possible now



Benefits of Top-down approach

• Possible to intentionally limit search space
• Effective pruning with branch-and-bound

• Limit search space with search time deadline
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Cost-based Optimization Basics

Two major cost-based optimization style

• System-R
• Cost modeling with statistics

• Bottom-up search

• Volcano/Cascades
• Extensible optimizer generator

• Cost estimation is user’s responsibility

• Top-down transformational search
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Outline

• Introduction

• Theory: Query Optimization Framework

• Code: PostgreSQL Optimizer

• Theory: Cutting-Edge Technologies Overview

• Summary
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PostgreSQL Optimizer

“System-R style” optimization
• Bottom-up plan search with dynamic programming
• CPU and I/O operation based cost modeling
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Seq. I/O Random I/O CPU cost per tuple

Cost of single operation
• seq_page_cost
• random_page_cost
• cpu_tuple_cost
• cpu_index_tuple_cost
• cpu_operator_cost
• (parallel_tuple_cost)

Estimated number of each operation
• Cardinality estimation with 

statistics
• Cost formula for each plan type

• SeqScan, IndexScan
• NestLoopJoin, HashJoin, 

MergeJoin, ...



Detailed Look At Basic Scan Types

• Sequential scan
• Efficient for accessing large potion of tables

• Index scan
• Efficient for accessing a fraction of data
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Execution cost

Query selectivity

Sequential scan



of SeqScan

29

= (# pages in a table)

= (# tuples in a table)

= #qual_operator
= (#tuples) × (weight factor of A)

+ (#tuples) × (weight factor of B)

+ ・・・

・・・ WHERE   AND AND ・・・A B

cost_seqscan()
@optimizer/path/costsize.c



of IndexScan

Consists of:

(A) CPU cost of searching B+-tree

(B) CPU cost of scanning index tuples in leaf pages

(C) I/O cost of leaf pages

(D) I/O cost of heap pages

(E) CPU cost of scanning heap tuples
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of IndexScan

(A) B+-tree search

(B) Scanning index tuples in leaf pages
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+= log2(#index_tuples)

I/O cost of internal pages
Assumed to be always cached in the buffer

+= #qual_operator

× #leaf_pages ✕ #ituple_per_page × σ

Selectivity σ
Comes from statistics



Mackert and Lohman function（Yao function）
I/O count estimation with consideration of buffer caching

of IndexScan

(C) I/O cost of index leaf pages
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+= Y(effective_cache_size, #leaf_pages)

Selectivity σ

I/
O
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o

u
n
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of IndexScan

(D) I/O cost of heap pages

(E) CPU cost of scanning heap tuples

・ Estimate the number of scanned tuples from σ
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+= α2 × #match_pages

Correlation between index and heap ordering: α

α = 0 : I/O pattern is random α = 1 : I/O pattern is sequential

+= (1-α2) × #match_tuples



Detailed Look At Join Methods

• Hash join
• Efficient for joining large number of records

• Usually combined with sequential scans

• Nested Loop Join
• Efficient for joining small number of records

• Usually combined with index scans or small table 
sequential scans
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of HashJoin
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of HashJoin

Build phase

• Cost += Cost(inner)
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+= #qual_op × #inner_tuples

+= #inner_tuples

Hashing cost



of HashJoin
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Build phase

• Cost += Cost(inner)
+= #qual_op × #inner_tuples

+= #inner_tuples



of HashJoin
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Build phase

• Cost += Cost(inner)+

Probe phase

• Cost += Cost(outer)+

+= #qual_op × #inner_tuples

+= #inner_tuples

+= #qual_op × (1 + #bucket_size × 0.5)
× #outer_tuples

+= #match_tuples

Hashing & table lookup (bucket search) cost



recordrecordrecordrecordrecordrecordrecordrecordrecordrecordrecordrecordrecordrecordrecordtuple

of HashJoin
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#buckets: 2 #buckets : 4

build

4 tuples are compared for 
lookup in average 2 tuples are compared for lookup 

in average
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3.E+07

4.E+07

4.E+07
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Estimated cost of 2-way HashJoin

# of records

16 records

recordrecordrecordrecordrecordrecordrecordtuple

recordrecordrecordrecordrecordrecordrecordtuple

recordrecordrecordtuple

recordrecordrecordtuple

recordrecordrecordtuple

recordrecordrecordtuple



of NestLoopJoin
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R⨝ S Scan R r2

r1

r3

r4

Scan S with r1

s1

s2

s3

ReScan S with r2

s1

s2

s3

outer inner



of NestLoopJoin

• When #outer_tuples = 1
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R⨝ S Scan R

r1
Scan S with r1

s1

s2

s3

outer inner

Cost = Cost(outer) + Cost(inner) +

+= #inner_tuples

+= #qual_operator × #inner_tuples



of NestLoopJoin

• When #outer_tuples > 1

R⨝ S Scan R r2

r1

r3

r4

Scan S with r1

s1

s2

s3

ReScan S with r2

s1

s2

s3

outer inner

Cost = Cost(outer) + Cost(inner) + 

+ (#outer_tuples - 1) × Cost(ReScan inner)

Higher buffer hit ratio in ReScan
→ Cost of ReScan is lower than cost of IndexScan

+= #inner_tuples × #outer_tuples

+= #qual_operator × #inner_tuples × #outer_tuples



See How It Works

• TPC-H Benchmark
• Specification and tools for benchmarking data 

warehouse workload
• Open source implementation: DBT-3, pg_tpch

• Schema, data generation rules and queries

• Experiments with 100GB
• Scale Factor = 100
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Experimental Setup

• Dell R720xd
• Xeon (2sockets, 16cores)
• x24 NL-SAS HDD

• With PostgreSQL 9.5
• Default cost parameter settings
• SeqScan & HashJoin

• enable_seqscan = on, enable_hashjoin = on
and disables other methods

• IndexScan & NestLoopJoin
• enable_indexscan = on, enable_nestloop = on

and disables other methods

2016/5/20 44



TPC-H Q.1: The Simplest Case
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Estimated cost

Selectivity (l_shipdate)

IndexScan

SeqScan
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1 10 100 1000

Execution time (sec)

Selectivity(l_shipdate)

IndexScan

SeqScan

• Good trend estimation for each 
method

• Estimated break-event point is 
errorneus
• IndexScan should be more 

expensive (need parameter 
calibration)

SELECT count(*), ... FROM lineitem
WHERE l_shipdate BETWEEN [X] AND [Y]



TPC-H Q.3
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Estimated cost

SeqScan
customer

SeqScan
orders

SeqScan
lineitem

Hash

HashJoin

HashJoin

IndexScan
orders

IndexScan
lineitem

NestLoop

NestLoop

IndexScan
customer

Execution time (sec)

Selectivity
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1
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1 10 100 1000 10000 100000 1000000

Selectivity

NestLoop+IndexScan

HashJoin+SeqScan

NestLoop+IndexScan

HashJoin+SeqScan Similar result as in Q.1

• Good trend estimation for each

• Erroneous break-event point 
without parameter calibration

SELECT count(*), ...
FROM customer, orders, lineitem
WHERE c_custkey = o_custkey AND

o_orderkey = l_orderkey AND
c_custkey < [X] AND
c_mktsegment = ‘MACHINERY’;



100

1000

10000

100000

1 10 100 1000 10000

More Complex Case
TPC-H Q.4: Semi-Join Query

• Plan selection for semi-
join tend to be unstable
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1.E+09

1 10 100 1000 10000

HashJoin+SeqScan

NestLoop+IndexScan

Estimated cost

Execution time (sec)

HashJoin+SeqScan

NestLoop+IndexScan SELECT count(*), ...
FROM orders
WHERE

o_orderdate >= ‘1995-01-01’ AND
o_orderdate < ‘1995-01-01’

+ interval ‘3 month’ AND
EXISTS(

SELECT * FROM lineitem
WHERE l_orderkey = o_orderkey
AND l_commitdate < l_receiptdate)

Selectivity



1.E+06

1.E+07

1.E+08

1.E+09

1.E+10

1.E+11

1.E+00 1.E+02 1.E+04 1.E+06 1.E+08

More Complex Case
TPC-H Q.22: Anti-Join Query

• Difficulties in overall cost 
trend estimation
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Selectivity

1
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Estimated cost

Execution time (sec)

Selectivity

HashJoin+SeqScan

NestLoop+IndexScan

HashJoin+SeqScan

NestLoop+IndexScan

SELECT count(*), ... 
FROM supplier, lineitem l1, orders, nation 
WHERE s_suppkey = l1.l_suppkey AND

o_orderkey = l1.l_orderkey AND
o_orderstatus = 'F' AND
l1.l_receiptdate > l1.l_commitdate AND

EXISTS (
SELECT * FROM lineitem l2
WHERE l2.l_orderkey = l1.l_orderkey
AND l2.l_suppkey <> l1.l_suppkey)

AND NOT EXIST (
SELECT * FROM lineitem l3
WHERE l3.l_orderkey = l1.l_orderkey
AND l3.l_suppkey <> l1.l_suppkey
AND l3.l_receiptdate > l3.l_commitdate)

AND s_nationkey = n_nationkey
AND n_name = ‘JAPAN' 



Summary: PostgreSQL 
Optimizer
• Detailed look at cost modeling of basic methods

• SeqScan, IndexScan

• HashJoin, NestedLoopJoin

• Observation with TPC-H benchmark
• Good cost trend estimation for simple join queries

• Erroneous cheapest plan selection without parameter tuning

• Difficulties with semi-join and anti-join queries
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Outline

• Introduction

• Theory: Query Optimization Framework

• Code: PostgreSQL Optimizer

• Theory: Cutting-Edge Technologies Overview

• Summary
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Cutting-Edge Technologies

• Traditional optimization was a “closed” problem

• “Rethink the contract” ー Surajit Chaudhuri

• Feedback from previous execution

• Dynamic integration with execution
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cardinality
estimation

cost model

plan space
enumeration

(SQL) query plan



Mid-query Re-optimization

• Detects sub-optimality of executing query plan
• Query plans are annotated for later estimation 

improvement
• Runtime statistics collection

• Statistics collector probes are inserted into operators of 
executing query plan

• Plan modification strategy
• Discard current execution and re-optimize whole plan
• Re-optimizer only subtree of the plan that are not 

started yet
• Save partial execution result and generate new SQL 

using the result
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[N. Kabra et.al., SIGMOD’98]



Plan Bouquet

• Generate a set of plans for each selectivity range

• Estimation improvement with runtime statistics
collection

• Evaluation with PostgreSQL
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[A. Dutt et.al., SIGMOD’14]



Bounding Impact of Estimation Error 

• “Uncertainty” analysis of cost estimation
• Optimality sensitivity to estimation error

• Execute partially to reduce uncertainty
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[T. Neumann et.al., BTW Conf ‘13]



Outline

• Introduction

• Theory: Query Optimization Framework

• Code: PostgreSQL Optimizer
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• Summary
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Summary

• Cost-based optimization framework
• System-R style bottom-up optimization

• Volcano style top-down optimization

• Detailed look at PostgreSQL optimizer
• Cost modeling of basic scan and join method

• Experiment with TPC-H benchmark

• Brief overview of cutting-edge technologies
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