
Beyond EXPLAIN

Yuto Hayamizu

Ryoji Kawamichi

Query Optimization
From Theory To Code

2016/5/20
PGCon 2016 @ Ottawa

Before Relational …

• Querying was physical

• Need to understand
physical organization

• Navigate query execution
by yourself

2016/5/20 2

DEPT
EMP

PROJ

“Which file is this table stored in?”

“How are records linked?”

“Which access path is fast for this table?”

“What is the best order of joining tables”

…

Historically …

Before Relational …

• Querying was physical

• Need to understand
physical organization

• Navigate query execution
by yourself

2016/5/20 3

After Relational …

DEPT
EMP

PROJ

“Which file is this table stored in?”

“How are records linked?”

“Which access path is fast for this table?”

“What is the best order of joining tables”

…

• Querying is logical

• Physical organization is
black-boxed

• Just declare what you want

Historically …

Fill the Gap: Physical and Logical

2016/5/20 4

SELECT * FROM DEPT D, EMP E

WHERE E.D_ID = D.ID AND ...

• Storage I/O strategy

• Access path selection

• Join method selection

• Aggregation, sorting

• Resource allocation

• ...

Query Optimizer

If optimizer perfectly fills the gap...

2016/5/20 5

We don’t need EXPLAIN

Reality Is Tough

• Optimizer is NOT PERFECT
• Generated plans are not always optimal, sometimes

far from optimal

• We have to take care of physical behavior

• That’s why EXPLAIN is so much explained

2016/5/20 6

Go Beyond EXPLAIN

• Deeper understanding of optimization, better
control of your databases

• Theoretical fundamentals of query optimization
• From basic framework to cutting-edge technologies

• PostgreSQL Optimizer implementation
• Focusing on basic scan and join methods

• Behavior observation with TPC-H benchmark

2016/5/20 7

Outline

• Introduction

• Theory: Query Optimization Framework

• Code: PostgreSQL Optimizer

• Theory: Cutting-Edge Technologies Overview

• Summary

2016/5/20 8

Query Optimization Framework

• Cost-based optimization
• Plan selection with estimated execution cost

• Most of modern optimizers, including PostgreSQL,
are cost-based

• Rule-based optimization
• Plan selection with heuristically ranked rules

• Easy to produce the same result

• Hard to evaluate wide variety of plans

• Ex) Oracle (~10g), Hive (~0.13)

2016/5/20 9

Main Challenges in Cost-based Optimization

• Cost modeling is HARD
• Overhead of CPU, I/O, memory access, network, …

• Cardinality estimation is HARD
• Output size of scans, joins, aggregations, …

• Join ordering search is HARD
• Combinatorial explosion of join ordering and access path

• Exhaustive search is NP-hard

2016/5/20 10

System-R optimizer (1979)

• “The standard”
• Cost estimation with I/O and CPU

• Cardinality estimation with table statistics

• Bottom-up plan search

• Many of modern optimizers are “System-R style”
• PostgreSQL, MySQL, DB2, Oracle, ...

2016/5/20 11

Cost/Cardinality Estimation

• [#page fetched],[#storage API calls]
are estimated with cost formula and following
statistics

2016/5/20 12

CPU costI/O cost

COST = [#page fetched] + W * [#storage API calls]

weight parameter

• NCARD(T) ... the cardinality of relation T
• TCARD(T) ... the number of pages in relation T
• ICARD(I) ... the number of distinct keys in index I
• NINDX(I) ... the number of pages in index I

Bottom-up Plan Search

• Candidate plans for single relation
• The cheapest access path

• N-relation join ordering search
• Select the cheapest plans for each relation

• Then, find optimal join orderings of every 2-relation join

• Then, find optimal join orderings of every 3-relation join
• ... until N-relation

2016/5/20 13

Ex) A ⨝ B ⨝ C ⨝ D

Ex) A ⨝ B ⨝ C ⨝ D

Ex) A ⨝ B ⨝ C ⨝ D

Ex) A ⨝ B ⨝ C ⨝ D

Ex) A ⨝ B ⨝ C ⨝ D

Volcano/Cascades (1993)

• Top-down transformational plan search
• Yet another optimization approach
• Not well known as “System-R style”, but widely used in

practice
Ex) SQL Server, Apache Hive (Apache Calcite), Greenplum
Orca

• Extensible optimization framework
2016/5/20 19

Extensible Optimization Framework

Query Optimizer Generator

• Generalized expression of query plan not limited
to relational data model

• Users (optimizer developers) defines actual
implementations:
• Logical operator ... corresponds to relational algebra

• Physical algorithm ... corresponds to scan & join
methods such as sequential scan, index scan, hash
join, nested loop join

2016/5/20 20

Top-down Transformational Search

• Starts from an initial “logical plan”

• Generate alternative plans with:
A) Logical operator transformation
B) Physical algorithm selection
C) Enforcing sorting order

2016/5/20 21

Join Select T

Join

Select R Select S

Proj

Join

Select T

JoinSelect R

Select S

Proj

Change join ordering

Join Select T

Join

Select R

Select SProj

Projection push down

Example: 3-way join with projection

Top-down Transformational Search

• Starts from an initial “logical plan”

• Generate alternative plans with:
A) Logical operator transformation
B) Physical algorithm selection
C) Enforcing sorting order

2016/5/20 22

Join Select T

Join

Select R Select S

ProjExample: 3-way join with projection

HashJoin Select T

Join

SeqScan R SeqScan S

Proj

Join IdxScan T

Join

Select R Select S

Proj
…

Top-down Transformational Search

• Starts from an initial “logical plan”

• Generate alternative plans with:
A) Logical operator transformation
B) Physical algorithm selection
C) Enforcing sorting order

2016/5/20 23

Join Select T

Join

Select R Select S

Proj

Example: 3-way join with projection

Join Select T

Join

Sort Sort

Proj

Select R Select S

Enforce sorting order

merge join of R and S is possible now

Benefits of Top-down approach

• Possible to intentionally limit search space
• Effective pruning with branch-and-bound

• Limit search space with search time deadline

2016/5/20 24

Cost-based Optimization Basics

Two major cost-based optimization style

• System-R
• Cost modeling with statistics

• Bottom-up search

• Volcano/Cascades
• Extensible optimizer generator

• Cost estimation is user’s responsibility

• Top-down transformational search

2016/5/20 25

Outline

• Introduction

• Theory: Query Optimization Framework

• Code: PostgreSQL Optimizer

• Theory: Cutting-Edge Technologies Overview

• Summary

2016/5/20 26

PostgreSQL Optimizer

“System-R style” optimization
• Bottom-up plan search with dynamic programming
• CPU and I/O operation based cost modeling

2016/5/20 27

Seq. I/O Random I/O CPU cost per tuple

Cost of single operation
• seq_page_cost
• random_page_cost
• cpu_tuple_cost
• cpu_index_tuple_cost
• cpu_operator_cost
• (parallel_tuple_cost)

Estimated number of each operation
• Cardinality estimation with

statistics
• Cost formula for each plan type

• SeqScan, IndexScan
• NestLoopJoin, HashJoin,

MergeJoin, ...

Detailed Look At Basic Scan Types

• Sequential scan
• Efficient for accessing large potion of tables

• Index scan
• Efficient for accessing a fraction of data

2016/5/20 28

Execution cost

Query selectivity

Sequential scan

of SeqScan

29

= (# pages in a table)

= (# tuples in a table)

= #qual_operator
= (#tuples) × (weight factor of A)

+ (#tuples) × (weight factor of B)

+ ・・・

・・・ WHERE AND AND ・・・A B

cost_seqscan()
@optimizer/path/costsize.c

of IndexScan

Consists of:

(A) CPU cost of searching B+-tree

(B) CPU cost of scanning index tuples in leaf pages

(C) I/O cost of leaf pages

(D) I/O cost of heap pages

(E) CPU cost of scanning heap tuples

2014/12/04 30

of IndexScan

(A) B+-tree search

(B) Scanning index tuples in leaf pages

2014/12/04 31

+= log2(#index_tuples)

I/O cost of internal pages
Assumed to be always cached in the buffer

+= #qual_operator

× #leaf_pages ✕ #ituple_per_page × σ

Selectivity σ
Comes from statistics

Mackert and Lohman function（Yao function）
I/O count estimation with consideration of buffer caching

of IndexScan

(C) I/O cost of index leaf pages

2014/12/04 32

+= Y(effective_cache_size, #leaf_pages)

Selectivity σ

I/
O

 c
o

u
n

t

of IndexScan

(D) I/O cost of heap pages

(E) CPU cost of scanning heap tuples

・ Estimate the number of scanned tuples from σ

2014/12/04 33

+= α2 × #match_pages

Correlation between index and heap ordering: α

α = 0 : I/O pattern is random α = 1 : I/O pattern is sequential

+= (1-α2) × #match_tuples

Detailed Look At Join Methods

• Hash join
• Efficient for joining large number of records

• Usually combined with sequential scans

• Nested Loop Join
• Efficient for joining small number of records

• Usually combined with index scans or small table
sequential scans

2016/5/20 34

of HashJoin

2014/12/04 35

of HashJoin

Build phase

• Cost += Cost(inner)

2014/12/04 36

+= #qual_op × #inner_tuples

+= #inner_tuples

Hashing cost

of HashJoin

2014/12/04 37

Build phase

• Cost += Cost(inner)
+= #qual_op × #inner_tuples

+= #inner_tuples

of HashJoin

2014/12/04 38

Build phase

• Cost += Cost(inner)+

Probe phase

• Cost += Cost(outer)+

+= #qual_op × #inner_tuples

+= #inner_tuples

+= #qual_op × (1 + #bucket_size × 0.5)
× #outer_tuples

+= #match_tuples

Hashing & table lookup (bucket search) cost

recordrecordrecordrecordrecordrecordrecordrecordrecordrecordrecordrecordrecordrecordrecordtuple

of HashJoin

2014/12/04 39

#buckets: 2 #buckets : 4

build

4 tuples are compared for
lookup in average 2 tuples are compared for lookup

in average

0.E+00

5.E+06

1.E+07

2.E+07

2.E+07

3.E+07

3.E+07

4.E+07

4.E+07

10000 100000 1000000 10000000 100000000

Estimated cost of 2-way HashJoin

of records

16 records

recordrecordrecordrecordrecordrecordrecordtuple

recordrecordrecordrecordrecordrecordrecordtuple

recordrecordrecordtuple

recordrecordrecordtuple

recordrecordrecordtuple

recordrecordrecordtuple

of NestLoopJoin

2014/12/04 40

R⨝ S Scan R r2

r1

r3

r4

Scan S with r1

s1

s2

s3

ReScan S with r2

s1

s2

s3

outer inner

of NestLoopJoin

• When #outer_tuples = 1

2014/12/04 41

R⨝ S Scan R

r1
Scan S with r1

s1

s2

s3

outer inner

Cost = Cost(outer) + Cost(inner) +

+= #inner_tuples

+= #qual_operator × #inner_tuples

of NestLoopJoin

• When #outer_tuples > 1

R⨝ S Scan R r2

r1

r3

r4

Scan S with r1

s1

s2

s3

ReScan S with r2

s1

s2

s3

outer inner

Cost = Cost(outer) + Cost(inner) +

+ (#outer_tuples - 1) × Cost(ReScan inner)

Higher buffer hit ratio in ReScan
→ Cost of ReScan is lower than cost of IndexScan

+= #inner_tuples × #outer_tuples

+= #qual_operator × #inner_tuples × #outer_tuples

See How It Works

• TPC-H Benchmark
• Specification and tools for benchmarking data

warehouse workload
• Open source implementation: DBT-3, pg_tpch

• Schema, data generation rules and queries

• Experiments with 100GB
• Scale Factor = 100

2016/5/20 43

Experimental Setup

• Dell R720xd
• Xeon (2sockets, 16cores)
• x24 NL-SAS HDD

• With PostgreSQL 9.5
• Default cost parameter settings
• SeqScan & HashJoin

• enable_seqscan = on, enable_hashjoin = on
and disables other methods

• IndexScan & NestLoopJoin
• enable_indexscan = on, enable_nestloop = on

and disables other methods

2016/5/20 44

TPC-H Q.1: The Simplest Case

2016/5/20 45

5.E+05

5.E+06

5.E+07

5.E+08

1 10 100 1000

Estimated cost

Selectivity (l_shipdate)

IndexScan

SeqScan

10

100

1000

10000

1 10 100 1000

Execution time (sec)

Selectivity(l_shipdate)

IndexScan

SeqScan

• Good trend estimation for each
method

• Estimated break-event point is
errorneus
• IndexScan should be more

expensive (need parameter
calibration)

SELECT count(*), ... FROM lineitem
WHERE l_shipdate BETWEEN [X] AND [Y]

TPC-H Q.3

2016/5/20 46

Estimated cost

SeqScan
customer

SeqScan
orders

SeqScan
lineitem

Hash

HashJoin

HashJoin

IndexScan
orders

IndexScan
lineitem

NestLoop

NestLoop

IndexScan
customer

Execution time (sec)

Selectivity

1.E+00

1.E+02

1.E+04

1.E+06

1.E+08

1 10 100 1000 10000 100000 1000000

1

10

100

1000

10000

1 10 100 1000 10000 100000 1000000

Selectivity

NestLoop+IndexScan

HashJoin+SeqScan

NestLoop+IndexScan

HashJoin+SeqScan Similar result as in Q.1

• Good trend estimation for each

• Erroneous break-event point
without parameter calibration

SELECT count(*), ...
FROM customer, orders, lineitem
WHERE c_custkey = o_custkey AND

o_orderkey = l_orderkey AND
c_custkey < [X] AND
c_mktsegment = ‘MACHINERY’;

100

1000

10000

100000

1 10 100 1000 10000

More Complex Case
TPC-H Q.4: Semi-Join Query

• Plan selection for semi-
join tend to be unstable

2016/5/20 47Selectivity

1.E+05

1.E+06

1.E+07

1.E+08

1.E+09

1 10 100 1000 10000

HashJoin+SeqScan

NestLoop+IndexScan

Estimated cost

Execution time (sec)

HashJoin+SeqScan

NestLoop+IndexScan SELECT count(*), ...
FROM orders
WHERE

o_orderdate >= ‘1995-01-01’ AND
o_orderdate < ‘1995-01-01’

+ interval ‘3 month’ AND
EXISTS(

SELECT * FROM lineitem
WHERE l_orderkey = o_orderkey
AND l_commitdate < l_receiptdate)

Selectivity

1.E+06

1.E+07

1.E+08

1.E+09

1.E+10

1.E+11

1.E+00 1.E+02 1.E+04 1.E+06 1.E+08

More Complex Case
TPC-H Q.22: Anti-Join Query

• Difficulties in overall cost
trend estimation

2016/5/20 48

Selectivity

1

10

100

1000

10000

1.E+00 1.E+02 1.E+04 1.E+06 1.E+08

Estimated cost

Execution time (sec)

Selectivity

HashJoin+SeqScan

NestLoop+IndexScan

HashJoin+SeqScan

NestLoop+IndexScan

SELECT count(*), ...
FROM supplier, lineitem l1, orders, nation
WHERE s_suppkey = l1.l_suppkey AND

o_orderkey = l1.l_orderkey AND
o_orderstatus = 'F' AND
l1.l_receiptdate > l1.l_commitdate AND

EXISTS (
SELECT * FROM lineitem l2
WHERE l2.l_orderkey = l1.l_orderkey
AND l2.l_suppkey <> l1.l_suppkey)

AND NOT EXIST (
SELECT * FROM lineitem l3
WHERE l3.l_orderkey = l1.l_orderkey
AND l3.l_suppkey <> l1.l_suppkey
AND l3.l_receiptdate > l3.l_commitdate)

AND s_nationkey = n_nationkey
AND n_name = ‘JAPAN'

Summary: PostgreSQL
Optimizer
• Detailed look at cost modeling of basic methods

• SeqScan, IndexScan

• HashJoin, NestedLoopJoin

• Observation with TPC-H benchmark
• Good cost trend estimation for simple join queries

• Erroneous cheapest plan selection without parameter tuning

• Difficulties with semi-join and anti-join queries

2016/5/20 49

Outline

• Introduction

• Theory: Query Optimization Framework

• Code: PostgreSQL Optimizer

• Theory: Cutting-Edge Technologies Overview

• Summary

2016/5/20 50

Cutting-Edge Technologies

• Traditional optimization was a “closed” problem

• “Rethink the contract” ー Surajit Chaudhuri

• Feedback from previous execution

• Dynamic integration with execution

2016/5/20 51

cardinality
estimation

cost model

plan space
enumeration

(SQL) query plan

Mid-query Re-optimization

• Detects sub-optimality of executing query plan
• Query plans are annotated for later estimation

improvement
• Runtime statistics collection

• Statistics collector probes are inserted into operators of
executing query plan

• Plan modification strategy
• Discard current execution and re-optimize whole plan
• Re-optimizer only subtree of the plan that are not

started yet
• Save partial execution result and generate new SQL

using the result

2016/5/20 52

[N. Kabra et.al., SIGMOD’98]

Plan Bouquet

• Generate a set of plans for each selectivity range

• Estimation improvement with runtime statistics
collection

• Evaluation with PostgreSQL

2016/5/20 53

[A. Dutt et.al., SIGMOD’14]

Bounding Impact of Estimation Error

• “Uncertainty” analysis of cost estimation
• Optimality sensitivity to estimation error

• Execute partially to reduce uncertainty

2016/5/20 54

[T. Neumann et.al., BTW Conf ‘13]

Outline

• Introduction

• Theory: Query Optimization Framework

• Code: PostgreSQL Optimizer

• Theory: Cutting-Edge Technologies Overview

• Summary

2016/5/20 55

Summary

• Cost-based optimization framework
• System-R style bottom-up optimization

• Volcano style top-down optimization

• Detailed look at PostgreSQL optimizer
• Cost modeling of basic scan and join method

• Experiment with TPC-H benchmark

• Brief overview of cutting-edge technologies

2016/5/20 56

