Lessons in Building a
Distributed Query Planner

Ozgun Erdogan
PGCon 2016

citusdata

Talk Outline

ntroduction
Key insight in distributed planning

w o=

Distributed logical plans

4. Distributed physical plans
5. Different workloads: Different executors
* Four technical lightning talks in one

citusdata

What is Citus?

e Citus extends PostgreSQL (not a fork) to provide
it with distributed functionality.

* Citus scales-out Postgres across servers using
sharding and replication. Its query engine
parallelizes SQL queries across many servers.

* Citus 5.0 is open source: https://github.com/
citusdata/citus

citusdata

Citus 5.0 Architecture Diagram

Citus master
(PostgreSQL +
Citus extension)

Distributed table

(metadata)

E1||E3’ E2 ||EY’
Citus worker 1 Citus worker 2
(PostgreSQL +

Citus extension)

Regular tables
(1 shard = 3
1 Postgres table)

E2

Citus worker N

citusdata

When is Citus a good fit?

e Sub-second OLAP queries on data as it arrives
 Powering real-time analytic dashboards
* Exploratory queries on events as they arrive
* Who is using Citus?
* CloudFlare uses Citus to power their analytic dashboards
* Neustar builds ad-tech infrastructure with HyperLoglLog
* Heap powers funnel, segmentation, and cohort queries
e Citusisn’t a good fit to replace your data warehouse.

citusdata

Why is distributed query
planning (SELECTs) hard?

citusdata

Past Experiences

Built a similar distributed data processing engine at
Amazon called CSPIT

Led by a visionary architect and built by an
extremely talented team

Scaled to (at best) a dozen machines. Nicely
distributed basic computations across machines

* Then the dream met reality

citusdata

Why did it fail?

* You can solve all distributed systems
problems in one of two days:

1. Bring your data to the computation
2. Push your computation to the data

citusdata

Bringing data to computation (1)

SELECT sum(price) Compute sum(price) on
FROM orders; q orders_ 2013, 2014, 2015 (b)

Bring data to
computation (a)

orders_ orders_ orders_
2013 2014 2015

citusdata

Bringing computation to data (2)

SELECT sum(price)
FROM orders:;

SELECT sum(price)
FROM orders 20

orders_
2013

orders_
2014

Sum up intermediate
compute results (b)

Bring computation
to data (a)

orders_
2015

citusdata

Slightly more complex queries

* Sum(price): sum(price) on worker nodes and
then sum() intermediate results

e Avg(price): Can you avg(price) on worker
nodes and then avg() intermediate results?

* Why not?

citusdata

Commutative Computations

* |f you can transform your computations into
their commutative form, then you can push
them down.

e (a+b=b+a;a/b#zb/a) (*)

* Associative and distributive property for other

operations (We also knew about this)

citusdata

How does this help me?

Commutative, associative, and distributive
properties hold for any query language

We pick SQL as an example language
SQL uses Relational Algebra to express a query

If a query has a WHERE clause in it, that’s a
FILTER node in the relational algebra tree

citusdata

Simple SQL query

SELECT sum(price) FROM orders, nation
WHERE orders.nation = nation.name AND
orders.date >= '2012-01-01"' AND

nation.region = 'Asia’;

citusdata

Distributed Logical Plan (unoptimized)

T

Collect

Table (orders)

ExtendedOp (sum(price))

Project (price)

Filter (orders.date >= '2012-01-01
And nation.region = 'Asia’;)

oin (orders.nation = nation.name)

Collect

Table (nation)

citusdata

Distributed Logical Plan (optimized)

— ExtendedOp

—

Collect

H

roject (nation, price)

Filter (orders.date >=
'2012-01-01")

Table (orders)

(sum(intermediate_0, ...))

ExtendedOp (sum(price))

oin (orders.nation = nation.name)

Project (name)

Filter (nation.region =
'‘Asia’)

Table (nation)

citusdata

Takeaway

In the land of distributed systems, the
commutative (and distributive) property is king!
Transform your queries with respect to the king,

and your network 1/0 will scale.

citusdata

From Example to
Distributed Logical Plans

citusdata

One example doesn’t make a proof

e Can you prove this model is complete?
* Relational Algebra has 10 operators

 What about optimizing more complex
plans with joins, subselects, and other
constructs?

citusdata

Multi-Relational Algebra

* Correctness of Query Execution Strategies in
Distributed Databases Ceri and Pelagatti, 1983

A Distributed Database paper from a more
civilized age

* Models each relational algebra operator as a
distributed operator and extends it

citusdata

Collect and Repartition Operators

* Collect operator merges data underneath in
one place

 Repartition operator takes a “relation”
partitioned on one dimension, and
repartitions it on a different dimension

citusdata

Commutative Property Rules

Table III. Commutativity of Unary Operations: UN1(UN2(R)) UN2(UN1(R))

UN,
UN, PRJ PAR coL asL MSL
PRJ SNC, SNC, Y Y SNC5
PAR Y Y N SNC, Y
coL Y N Y N Y
asL Y SNC, N Y SNC
MSL Y Y Y SNCs Y

Conditions:

SNC1: PRJEA1](PRJ[AZJ(R)) -> PRJ[Azl(PRJCA1](R))

iff A‘|=A

2

citusdata

Distributive Property Rules

Table IV. Distributivity of Unary Operations with Respect to Binary Operations
McP MUN DIF MINCjp] SINCjp)
PRJ |PRICAI(BINCR,S)) —> Y Y NSC NSC
1 1
BIN(PRJ[AR](R),PRJ(ASJ(S)) N [S
ln=A‘A(S) AR=AS=A Ay=A=A(S)| A =A=A(S)
A.=A=A(R) Ae=A=A(R) [A=A=A(R)
S S S
PAR |PARCPI (BIN(R,S)) — NSC2 Y Y NSCZ Y
BIN(PAR[PR](R),PAR[PSJ(S)) = -
P =P P, =P Po=P Pp= Po=P
R’ R, * R~ R 5’ R 7
PS=F Pg=P any Pg PS=F Pg={true}
COL | COL(BIN(R,S)) —>
BINCCOL(R) ,COL(S)) Y N Y Y Y
QSL [QSLCP] (BINCR,S)) —> Y Y
BIN(ASLLp I (R),ASLLPI(S)) N N N
P =Pg=p | P.=p,
p_=true
S
MSL IMSLEP) (BINC(R,S)) — NS‘Z3 Y Y NS(:3 };sc:s
BINCMSLLp J(R) MSLEP 1 (S))
Pp=Py Pr=Pg™P Drf? PPy Pp=Pq
Ps=P2 pgEtrue | pPg=Py Ps=P2

Conditions:
NSC.' : AGip) CA

Factorization Rules

Table V. Factorization of Unary Operations from Binary Operations

Mce MUN DIF MINCipd | SINLjpd
PRJ [BINCPRICA, 3 (R) ,PRICASD (S)) Y Y Y Y
~ PRJCAI(BIN(R,S)) N
A=ho U Ag | A=Ag=Ag A=A U Ag | A=Ag
PAR IBINCPARLP, 1 (R) ,PARLP <) (S)) Y NSCy Y y sc1
~> PARCPI(BIN(R,S))
GRy |P=Pg=Pg | P=P, 6Ry | P=py
COL |BINCCOL(R) ,COL(S))
> COL(BIN(R,S)) Y N y Y Y
ast [BINCASLIP J(R),aSLIp 3 (5)) NsC, sc,
> QSLLpI(BIN(R,S) " N N N
P=p =p. [p=p,
MSL alu(NSL(prl(R),MSL[sz(S)) Y NSC, SC, Y S(:2
> MSLIp)(BIN(R,S)) -
p=0_A Pg |P=Pr=Pg P=pr PP A Dy | PERL

Generation Rules

GR,: Pz(p:] <p, ps>GPRxPS (p=p. Apy)}

citusdata

Takeaway

Multi-relational Algebra (MRA) offers a
complete foundation for distributing SQL

gueries.

Note: Citus is adding more SQL functionality with each
release. Citus works best when you need to ingest and
qguery large volumes of data in human real-time.

citusdata

From Distributed Logical to
Distributed Physical Plan

citusdata

Logical plan # Physical plan

* “Table” is a logical operator. SequentialScan or
BitmaplndexScan is a physical operator.

* “Join” is a logical operator. HashJoin or
Mergeloin is a physical operator.

 Distributed databases that start with a database

usually just add physical operators. (Greenplum,
Redshift)

citusdata

Logical to Physical Plans

* /fyou have a distributed logical plan, you can
map that to a physical plan in different ways.
 Multi-relational Algebra defines relational

algebra operators, Collect, and Repartition
1. All standard operators -> SQL

2. Collect -> Copy data
3. Repartition -> Map/Reduce

citusdata

SQL as a physical operator

* Defining “SQL” as an execution primitive
decouples local execution internals from
distributed execution.

1. Decouple network and disk I/O related planning.
Delegate disk I/O optimizations to PostgreSQL

2. Automatically pick up improvements in Postgres.
Also benefit from LLVM and vectorized execution

citusdata

Repartition through an example (1)

SELECT
count(distinct customer_id)
FROM >
orders;

How to push down /
parallelize count(distinct)?

orders_ orders_ orders_
2013 2014 2015

citusdata

Repartition through an example (2)

orders_
2013

PN

orders_
2014

orders__
2013_

cust_id_
[0-1B(

orders_
2013_

cust_id_

(1B-2B(

orders_
2013_

cust_id_

[2B-3B(

o

orders_
2015

orders_
2014 _
cust_id_

N

N —

orders__
cust_id_
[0-1B(

[0-1B(

orders_
2014 _

cust_id_

[1B-2B(

orders_
2014 _

cust_id_

[2B-3B(

T~/ —]

orders__
cust_id_
[1B-2B(

orders_2015-
repartitions-...

(2) Distributed
Shuffle

\\

orders_
cust_id_
[2B-3B(

citusdata

Repartition in Logical Plan

SELECT

count(distinct cust_id)
FROM

orders;

ExtendedOp
(sum(count(distinct cust_id_0, ...))

Collect

ExtendedOp (count(distinct cust_id))

How to express

Repartition (orders.cust_id) Repartition in
physical plan?

Table (orders)

citusdata

Repartition in Physical Plan

mergeg mergeg
e node A B, C °
map map
fetch, fet
node D, E, F R ° °
' map-+ ' map, ' mapq

citusdata

Takeaway

Logical Plan # Physical Plan. A physical plan
expresses your execution primitives. The way
you define your distributed execution primitives

impacts how coupled you are with “local
execution”.

citusdata

Different Executors for
Different Workloads

citusdata

Different Workloads

1. Simple Insert / Update / Delete / Select commands
* High throughput and low latency

2. Real-time Select queries that get parallelized to hundreds of
shards (<300ms)

3. Longrunning Select queries that join large tables

* You can’t restart a Select query just because one task (or one
machine) in 1M tasks failed

citusdata

Different Executors

1. Router Executor: Simple Insert / Update / Delete /
Select commands

2. Real-time Executor: Real-time Select queries that
touch 100s of shards (<300ms)

3. Task-tracker Executor: Longer running queries that
need to scale out to 10K-1M tasks

citusdata

Conclusions

Distributed databases are about network I/O (and
failure semantics).

The Multi-Relational Algebra paper offers a complete
theoretical framework to minimize network 1/0O.

Citus maps that logical plan into a physical one that
decouples local and distributed execution.

Citus 5.1 is open source!

citusdata

Questions

https://citusdata.com
https://github.com/citusdata/citus

citusdata

