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Talk Outline

ntroduction
Key insight in distributed planning

w o=

Distributed logical plans

4. Distributed physical plans
5. Different workloads: Different executors
* Four technical lightning talks in one
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What is Citus?

e Citus extends PostgreSQL (not a fork) to provide
it with distributed functionality.

* Citus scales-out Postgres across servers using
sharding and replication. Its query engine
parallelizes SQL queries across many servers.

* Citus 5.0 is open source: https://github.com/
citusdata/citus
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Citus 5.0 Architecture Diagram
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When is Citus a good fit?

e Sub-second OLAP queries on data as it arrives
 Powering real-time analytic dashboards
* Exploratory queries on events as they arrive
* Who is using Citus?
* CloudFlare uses Citus to power their analytic dashboards
* Neustar builds ad-tech infrastructure with HyperLoglLog
* Heap powers funnel, segmentation, and cohort queries
e Citusisn’t a good fit to replace your data warehouse.
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Why is distributed query
planning (SELECTs) hard?
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Past Experiences

Built a similar distributed data processing engine at
Amazon called CSPIT

Led by a visionary architect and built by an
extremely talented team

Scaled to (at best) a dozen machines. Nicely
distributed basic computations across machines

* Then the dream met reality
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Why did it fail?

* You can solve all distributed systems
problems in one of two days:

1. Bring your data to the computation
2. Push your computation to the data
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Bringing data to computation (1)

SELECT sum(price) Compute sum(price) on
FROM orders; q orders_ 2013, 2014, 2015 (b)

Bring data to
computation (a)

orders_ orders_ orders_
2013 2014 2015
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Bringing computation to data (2)

SELECT sum(price)
FROM orders:;

SELECT sum(price)
FROM orders 20

orders_
2013

orders_
2014

Sum up intermediate
compute results (b)

Bring computation
to data (a)

orders_
2015
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Slightly more complex queries

* Sum(price): sum(price) on worker nodes and
then sum() intermediate results

e Avg(price): Can you avg(price) on worker
nodes and then avg() intermediate results?

* Why not?
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Commutative Computations

* |f you can transform your computations into
their commutative form, then you can push
them down.

e (a+b=b+a;a/b#zb/a) (*)

* Associative and distributive property for other

operations (We also knew about this)
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How does this help me?

Commutative, associative, and distributive
properties hold for any query language

We pick SQL as an example language
SQL uses Relational Algebra to express a query

If a query has a WHERE clause in it, that’s a
FILTER node in the relational algebra tree
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Simple SQL query

SELECT sum(price) FROM orders, nation
WHERE orders.nation = nation.name AND
orders.date >= '2012-01-01"' AND

nation.region = 'Asia’;

citusdata



Distributed Logical Plan (unoptimized)

T

Collect

Table (orders)

ExtendedOp (sum(price))

Project (price)

Filter (orders.date >= '2012-01-01
And nation.region = 'Asia’;)

oin (orders.nation = nation.name)

Collect

Table (nation)
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Distributed Logical Plan (optimized)

— ExtendedOp

—

Collect

H

roject (nation, price)

Filter (orders.date >=
'2012-01-01")

Table (orders)

(sum(intermediate_0, ...))

ExtendedOp (sum(price))

oin (orders.nation = nation.name)

Project (name)

Filter (nation.region =
'‘Asia’)

Table (nation)
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Takeaway

In the land of distributed systems, the
commutative (and distributive) property is king!
Transform your queries with respect to the king,

and your network 1/0 will scale.
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From Example to
Distributed Logical Plans
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One example doesn’t make a proof

e Can you prove this model is complete?
* Relational Algebra has 10 operators

 What about optimizing more complex
plans with joins, subselects, and other
constructs?
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Multi-Relational Algebra

* Correctness of Query Execution Strategies in
Distributed Databases Ceri and Pelagatti, 1983

A Distributed Database paper from a more
civilized age

* Models each relational algebra operator as a
distributed operator and extends it
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Collect and Repartition Operators

* Collect operator merges data underneath in
one place

 Repartition operator takes a “relation”
partitioned on one dimension, and
repartitions it on a different dimension
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Commutative Property Rules

Table III. Commutativity of Unary Operations: UN1(UN2(R)) UN2(UN1(R))

UN,
UN, PRJ PAR coL asL MSL
PRJ SNC, SNC, Y Y SNC5
PAR Y Y N SNC, Y
coL Y N Y N Y
asL Y SNC, N Y SNC
MSL Y Y Y SNCs Y

Conditions:

SNC1: PRJEA1](PRJ[AZJ(R)) -> PRJ[Azl(PRJCA1](R))

iff A‘|=A

2
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Distributive Property Rules

Table IV. Distributivity of Unary Operations with Respect to Binary Operations
McP MUN DIF MINCjp] SINCjp)
PRJ |PRICAI(BINCR,S)) —> Y Y NSC NSC
1 1
BIN(PRJ[AR](R),PRJ(ASJ(S)) N [ S
ln=A‘A(S) AR=AS=A Ay=A=A(S)| A =A=A(S)
A.=A=A(R) Ae=A=A(R) [A=A=A(R)
S S S
PAR |PARCPI (BIN(R,S)) — NSC2 Y Y NSCZ Y
BIN(PAR[PR](R),PAR[PSJ(S)) = -
P =P P, =P Po=P Pp= Po=P
R’ R, * R~ R 5’ R 7
PS=F Pg=P any Pg PS=F Pg={true}
COL | COL(BIN(R,S)) —>
BINCCOL(R) ,COL(S)) Y N Y Y Y
QSL [QSLCP] (BINCR,S)) —> Y Y
BIN(ASLLp I (R),ASLLPI(S)) N N N
P =Pg=p | P.=p,
p_=true
S
MSL IMSLEP) (BINC(R,S)) — NS‘Z3 Y Y NS(:3 };sc:s
BINCMSLLp J(R) MSLEP 1 (S))
Pp=Py Pr=Pg™P Drf? PPy Pp=Pq
Ps=P2 pgEtrue | pPg=Py Ps=P2

Conditions:
NSC.' : AGip) CA



Factorization Rules

Table V. Factorization of Unary Operations from Binary Operations

Mce MUN DIF MINCipd | SINLjpd
PRJ [BINCPRICA, 3 (R) ,PRICASD (S)) Y Y Y Y
~ PRJCAI(BIN(R,S)) N
A=ho U Ag | A=Ag=Ag A=A U Ag | A=Ag
PAR IBINCPARLP, 1 (R) ,PARLP <) (S)) Y NSCy Y y sc1
~> PARCPI(BIN(R,S))
GRy |P=Pg=Pg | P=P, 6Ry | P=py
COL |BINCCOL(R) ,COL(S))
> COL(BIN(R,S)) Y N y Y Y
ast [BINCASLIP J(R),aSLIp 3 (5)) NsC, sc,
> QSLLpI(BIN(R,S) " N N N
P=p =p. [p=p,
MSL alu(NSL(prl(R),MSL[sz(S)) Y NSC, SC, Y S(:2
> MSLIp)(BIN(R,S)) -
p=0_A Pg |P=Pr=Pg P=pr PP A Dy | PERL

Generation Rules

GR,: Pz(p:] <p, ps>GPRxPS (p=p. Apy)}
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Takeaway

Multi-relational Algebra (MRA) offers a
complete foundation for distributing SQL

gueries.

Note: Citus is adding more SQL functionality with each
release. Citus works best when you need to ingest and
qguery large volumes of data in human real-time.
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From Distributed Logical to
Distributed Physical Plan
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Logical plan # Physical plan

* “Table” is a logical operator. SequentialScan or
BitmaplndexScan is a physical operator.

* “Join” is a logical operator. HashJoin or
Mergeloin is a physical operator.

 Distributed databases that start with a database

usually just add physical operators. (Greenplum,
Redshift)
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Logical to Physical Plans

* /fyou have a distributed logical plan, you can
map that to a physical plan in different ways.
 Multi-relational Algebra defines relational

algebra operators, Collect, and Repartition
1. All standard operators -> SQL

2. Collect -> Copy data
3. Repartition -> Map/Reduce
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SQL as a physical operator

* Defining “SQL” as an execution primitive
decouples local execution internals from
distributed execution.

1. Decouple network and disk I/O related planning.
Delegate disk I/O optimizations to PostgreSQL

2. Automatically pick up improvements in Postgres.
Also benefit from LLVM and vectorized execution
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Repartition through an example (1)

SELECT
count(distinct customer_id)
FROM >
orders;

How to push down /
parallelize count(distinct)?

orders_ orders_ orders_
2013 2014 2015
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Repartition through an example (2)

orders_
2013

PN

orders_
2014

orders__
2013_

cust_id_
[0-1B(

orders_
2013_

cust_id_

(1B-2B(

orders_
2013_

cust_id_

[2B-3B(

o

orders_
2015

orders_
2014 _
cust_id_

N

N —

orders__
cust_id_
[0-1B(

[0-1B(

orders_
2014 _

cust_id_

[1B-2B(

orders_
2014 _

cust_id_

[2B-3B(

T~/ —]

orders__
cust_id_
[1B-2B(

orders_2015-
repartitions-...

(2) Distributed
Shuffle

\\

orders_
cust_id_
[2B-3B(
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Repartition in Logical Plan

SELECT

count(distinct cust_id)
FROM

orders;

ExtendedOp
(sum(count(distinct cust_id_0, ...))

Collect

ExtendedOp (count(distinct cust_id))

How to express

Repartition (orders.cust_id) Repartition in
physical plan?

Table (orders)
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Repartition in Physical Plan

mergeg mergeg
e node A B, C °
map map
fetch,  fet
node D, E, F R ° °
' map-+ ' map, ' mapq
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Takeaway

Logical Plan # Physical Plan. A physical plan
expresses your execution primitives. The way
you define your distributed execution primitives

impacts how coupled you are with “local
execution”.
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Different Executors for
Different Workloads
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Different Workloads

1. Simple Insert / Update / Delete / Select commands
* High throughput and low latency

2. Real-time Select queries that get parallelized to hundreds of
shards (<300ms)

3. Longrunning Select queries that join large tables

* You can’t restart a Select query just because one task (or one
machine) in 1M tasks failed
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Different Executors

1. Router Executor: Simple Insert / Update / Delete /
Select commands

2. Real-time Executor: Real-time Select queries that
touch 100s of shards (<300ms)

3. Task-tracker Executor: Longer running queries that
need to scale out to 10K-1M tasks
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Conclusions

Distributed databases are about network I/O (and
failure semantics).

The Multi-Relational Algebra paper offers a complete
theoretical framework to minimize network 1/0O.

Citus maps that logical plan into a physical one that
decouples local and distributed execution.

Citus 5.1 is open source!
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Questions

https://citusdata.com
https://github.com/citusdata/citus
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