
© 2013 EDB All rights reserved. 1

Run Simple Query Faster....

•

Dilip Kumar |

2016.05.19

PgCon 2016

2

Background

What is Simple Query

Instruction Measurement Of Simple Query

Instruction Analysis

Simple Query Optimization Solution

Performance Results

Future Optimization Plan

Contents

Background

3

Generic Executor Infrastructure:

Current executor is designed to support wide range of queries.

Often simple query ends up processing many extra instructions.

● Multi level of processing nodes, for example, update and insert need two level of

processing nodes.
● Data structures at different levels.
● Decision making infrastructures.
● Initialization is done for every execution.

What is Simple Query ?

4

In our experiments, we call a query as simple query if it has

following properties:

Simple target list without any function call or sub-query.

Simple Qualification clause.

No Joins.

No Aggregates.

Instructions Measurement for Simple Query

5

Experiment:

● Execute INSERT query of

pgbench_history table.

● Measured instructions using callgrind

tool, for execution of 1000

transactions.

Results

● Right side call graph shows,

instructions for a Insert query.

● Executor is taking almost 28% of total

instructions.

Instructions Measurement for Simple Query

6

Experiment:

● Execute simple_update of PGBENCH.

● Measured instructions using callgrind,

for execution of 1000 transactions.

Results

● Right side call graph shows, instruction

for simple_update.
● Executor is taking ~50% of total

instructions.

Instructions Analysis of Query Execution

7

Experiment:
● Executed simple_update of PGBENCH test, and measured instructions for 1000

transactions using callgrind.

Observation:
● Below chart shows, instruction division of query execution.
● ~50% instructions are from ExecutorRun and ExecutorStart.

30%

20%
10%

8%

7%

26%

Instruction Division of simple_update(PGBENCH)

ExecutorRun

ExecutorStart

CreatePortal

GetCachedPlan

Transaction and

Resowner

Other Cost

Instructions Analysis of ExecutorStart

8

Observation:
● In continuation to previous experiment we further divided ExecutorStart insturctions.
● Here we are more interested in ExecutorStart instructions because, most of the

initialization operations in ExecutorStart can be done only once and further reused in

subsequent execution.
● Here we can see ExecInitExpr and ExecTypeFromTL are main contributors.
● These inputs are used for deriving our optimization.

23%

26%

7%
7%

4%

6%

9%

6%

5%
7%

Instruction Division of ExecutorStart

ExecInitExpr

ExecTypeFromTL

BuildScanKeys

CreateEstate

heap_open

CheckRTPerm

InitJunkFilter

open_index

TupleTableSlot

ExprContext

Why Especially Prepared query

9

In previous slides we have seen that ExecutorStart is taking

> 20% of total and >40% of executor instructions.

If a query is prepared query then we can reuse executor tree

for subsequent execution of same plan and save complete

instructions of ExecutorStart.

Non prepared queries are random, so we can not reuse any

previous state, but we can save some infrastructure cost.

Implementation Idea

10

Special attention for simple queries, because they don't need very

generic infrastructures.
Provide a simple_executor hook using contrib module.
If query is identified as simple then execute using simple executor,

otherwise fall back to standard executor.

Optimization Experiment on Simple Query

11

 Push Down Scan key

 Save Expression Initialization for targetlist and qual

Save Scan slot

Save Executor State

Save Expression Context

Push Down Scan Key

12

 Since Quals are very simple, we can push down the

complete scan key below to the heap.

 Only qualified tuple will be returned from heap.

 Using this experiment we can save 50-60%

instructions of total execution.

Push Down Scan Key (Instructions)

13

Experiment:
● Executed select query, with equal qual on an integer column.

SELECT * FROM test WHERE c1=10;
● Selectivity 0.00001

Results:
● ~60% overall instructions reduction.

head patch

0

100

200

300

400

500

600

504

217

Instruction Comparision of Heap Scan

Scan Key Push Down

In
s

tu
rc

ti
o

n
s

 i
n

 M
il
li
o

n
s

Push Down Scan Key (Performance)

14

Experiment:
● Executed select query, with equal qual on an integer column.

SELECT * FROM test WHERE c1=10;
● Selectivity vary from 0.1 to 0.00001

Results:

Performance improvement is 7% at selectivity 0.1 which increased up to 150% at

selectivity 0.00001.

Push down Scan Key (Performance)

15

 Experiment:
● Executed select query, with equal qual on an integer column.

SELECT * FROM test WHERE c1=10;
● Selectivity 0.00001
● Client count vary from 1 to 16

Results:

 We observed performance gain of ~150% at different client count.

1 2 4 8 16

0

100

200

300

400

500

600

700

800

Heap Scan with Key Push Down

Selectivity 0.00001

Head

Patch

 Clients

T
P

S

Qual and Targetlist Initialization

16

In case of simple query expressions are easy to store and will

not consume huge memory.

Just by avoiding initialization of qual and tlist, we can save

>25 % instructions from ExecutorStart.

In order to identify a simple query, we need to process qual

and targetlist, but this is just one time cost.

Other Optimization

17

TupleTableSlot

ExecutorStart creates many TupleTableSlots during every

execution.
If we avoid doing this every time, we can reduce ~5-6%

instructions of ExecutorStart.

ExecutorState

ExecutorStart creates EState for each execution.
If we avoid this, we can again save 5-6% of ExecutorStart

instructions.

Other Optimization (cont..)

18

Scan Descriptor

Heap and index scan descriptors can be saved and these can

be reused just by resetting some fields.
Our current experiments don't include this optimization.

Scan Key

For index scan, ScanKey can be built only once and can be

reused for subsequent executions.
We can save cost of building scan key every time.

Performance Results (INSERT)

19

HEAD PATCH

0

20

40

60

80

100

120

96

70

Total Instruction for 1000 Insert in pgbench_history

In
s

tr
u

c
ti
o

n
s

 i
n

 M
il
li
o

n

HEAD PATCH

0

5

10

15

20

25

30

35

40
36

14

Executor Instructions for 1000 Insert

In
s

tr
u

c
ti
o

n
s

 i
n

 M
il
li
o

n

Experiment:
● Execute INSERT query of pgbench_history table
● Measured instructions using callgrind for execution of 1000 transactions.

Results:

We could save > 25% of total instructions and > 60% of executor Instructions.

Performance Results (SELECT)

20

HEAD PATCH

0

10

20

30

40

50

60

70

80

90

100 95

75

Total Instructions 'pgbench -S 1000 transactions'

In
s

tr
u

c
ti
o

n
s

 i
n

 M
il
li
o

n
s

HEAD PATCH

0

5

10

15

20

25

30

35

40 38

21

Executor Instructions 'pgbench -S 1000 transactions'

In
s

tr
u

c
ti
o

n
s

 I
n

 M
il
li
o

n

Experiment:
● Executed pgbench read only workload with single client.
● Measured instructions using callgrind for execution of 1000 transactions.

Results:
We could save > 20% of total instructions and > 40% of executor instructions.

Performance Results (SIMPLE_UPDATE)

21

HEAD PATCH

0

50

100

150

200

250

300

350

400

450
402

315

pgbench -N Total Instructions

In
s

tr
u

c
ti
o

n
s

 I
n

 m
il
li
o

n
s

Experiment:
● Executed pgbench simple_update workload (-N).
● Measured instructions using callgrind for execution of 1000 transactions.

Results:
 We could save > 20% of total instructions and > 35% of the executor instructions.

HEAD PATCH

0

50

100

150

200

250
225

150

pgbench -N Executor Instructions

In
s

tr
u

c
ti
o

n
s

 I
n

 M
il
li
o

n
s

Performance Results (SELECT)

22

In another experiment, we observed that by reducing the instruction count,

we could improve scaling, For SELECT, we observed a 12% gain at 1

client and which goes up to 22% at 8 clients.

1 2 4 8

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

pgbench -S performance

head

patch

Client

T
P

S

In our initial experiment with simple query we observed that

● ~50% instructions come from executor.

● Remaining 50% are from outside executor.

● For deriving further experiments, we have analyzed remaining

instructions, which are outside executor.

Future Optimization Plan

Experiment:
● Executed simple_update of PGBENCH.
● Measured instructions using callgrind.
● Analyzed all the instructions, which executed before hitting actual

executor.

Future Optimization Plan

39%

13%

19%

18%

3%
8%

Instruction Division of PGBENCH simple_update

Instruction before executor

PortalManagement

GetCachedPlan

Transaction and Resowner

CreateQueryDescriptor

GetSnapshotData

ReadCommand

Results:

● Most of these instructions are from portal management infrastructures.

~ 39% instructions, that is ~15-20% of total execution instructions.
● 18% instructions are from CreateQueryDescriptor, that is ~10% of total execution

instructions.
● Remaining are distributed across various functions like ReadCommand,

GetSnapshotData and many more.

Conclusion:

● In next level of optimization, we can further reduce 25-30% of total execution

instructions.
● So by including existing experiment, we can save 40-50% of total execution

instructions.

Future Optimization Plan

Questions?

26

Thanks!

27

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27

