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Background
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Generic Executor Infrastructure:

 
Current executor is designed to support wide range of queries.

Often simple query ends up processing many extra instructions. 

● Multi level of processing nodes, for example, update and insert need two level of 

processing nodes.
● Data structures at different levels.
● Decision making infrastructures.
● Initialization is done for every execution.

 



What is Simple Query ?
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In our experiments, we call a query as simple query if it has 

following properties:

Simple target list without any function call or sub-query.

Simple Qualification clause.

No Joins.

No Aggregates.

 



Instructions Measurement for Simple Query
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Experiment:

● Execute INSERT query of 

pgbench_history table.

● Measured instructions using callgrind 

tool, for execution of 1000 

transactions.

Results

● Right side call graph shows, 

instructions for a Insert query.

● Executor is taking almost 28% of total 

instructions.



Instructions Measurement for Simple Query
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Experiment:

● Execute simple_update of PGBENCH. 

● Measured instructions using callgrind, 

for execution of 1000 transactions.

Results

● Right side call graph shows, instruction 

for simple_update.
● Executor is taking ~50% of total 

instructions.

 



Instructions Analysis of Query Execution
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Experiment:
● Executed simple_update of PGBENCH test, and measured instructions for 1000 

transactions using callgrind.

Observation:
● Below chart shows, instruction division of query execution.
● ~50% instructions are from ExecutorRun and ExecutorStart.
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Instructions Analysis of ExecutorStart
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Observation:
● In continuation to previous experiment we further divided ExecutorStart insturctions.
● Here we are more interested in ExecutorStart instructions because, most of the 

initialization operations in ExecutorStart can be done only once and further reused in 

subsequent execution.
● Here we can see ExecInitExpr and ExecTypeFromTL are main contributors.
● These inputs are used for deriving our optimization.
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Why Especially Prepared query
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In previous slides we have seen that ExecutorStart is taking 

> 20% of total and >40% of executor instructions.

If a query is prepared query then we can reuse executor tree 

for subsequent execution of same plan and save complete 

instructions of ExecutorStart. 

Non prepared queries are random, so we can not reuse any 

previous state, but we can save some infrastructure cost.



Implementation Idea
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Special attention for simple queries, because they don't need very 

generic infrastructures.
Provide a simple_executor hook using contrib module.
If query is identified as simple then execute using simple executor, 

otherwise fall back to standard executor.



Optimization Experiment on Simple Query
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 Push Down Scan key

 Save Expression Initialization for targetlist and qual

Save Scan slot

Save Executor State

Save Expression Context



Push Down Scan Key
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 Since Quals are very simple, we can push down the 

complete scan key below to the heap.

 Only qualified tuple will be returned from heap.

 Using this experiment we can save 50-60% 

instructions of total execution.



Push Down Scan Key (Instructions)
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Experiment:
● Executed select query, with equal qual on an integer column.

SELECT * FROM test WHERE c1=10;
● Selectivity 0.00001

Results:
● ~60% overall instructions reduction.
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Push Down Scan Key (Performance)
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Experiment:
● Executed select query, with equal qual on an integer column.

SELECT * FROM test WHERE c1=10;
● Selectivity vary from 0.1 to 0.00001 

Results:

Performance improvement is 7% at selectivity 0.1 which increased up to 150% at 

selectivity 0.00001.

 



Push down Scan Key (Performance)
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 Experiment:
● Executed select query, with equal qual on an integer column.

SELECT * FROM test WHERE c1=10;
● Selectivity 0.00001
● Client count vary from 1 to 16

Results:

    We observed performance gain of ~150% at different client count.
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Qual and Targetlist Initialization
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In case of simple query expressions are easy to store and will 

not consume huge memory.

Just by avoiding initialization of qual and tlist, we can save 

>25 % instructions from ExecutorStart.

In order to identify a simple query, we need to process qual 

and targetlist, but this is just one time cost.



Other Optimization
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TupleTableSlot

ExecutorStart creates many TupleTableSlots during every 

execution.
If we avoid doing this every time, we can reduce ~5-6%  

instructions of ExecutorStart.

ExecutorState

ExecutorStart creates EState for each execution.
If we avoid this, we can again save 5-6% of ExecutorStart 

instructions.



Other Optimization (cont..)
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Scan Descriptor

Heap and index scan descriptors can be saved and these can 

be reused just by resetting some fields.
Our current experiments don't include this optimization.

Scan Key

For index scan, ScanKey can be built only once and can be 

reused for subsequent executions.
We can save cost of building scan key every time. 



Performance Results (INSERT)
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Experiment:
● Execute INSERT query of pgbench_history table
● Measured instructions using callgrind for execution of 1000 transactions.

Results:

We could save > 25% of total instructions and > 60% of executor Instructions.

 



Performance Results (SELECT)
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Executor Instructions 'pgbench -S 1000 transactions'
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Experiment:
● Executed pgbench read only workload with single client.
● Measured instructions using callgrind for execution of 1000 transactions.

Results:
We could save > 20% of total instructions and > 40% of executor instructions.

 



Performance Results (SIMPLE_UPDATE)
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Experiment:
● Executed pgbench simple_update workload (-N).
● Measured instructions using callgrind for execution of 1000 transactions.

Results:
 We could save > 20% of total instructions and > 35% of the executor instructions.
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Performance Results (SELECT)
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In another experiment, we observed that by reducing the instruction count, 

we could improve scaling,  For SELECT, we observed a 12% gain at 1 

client and which goes up to 22% at 8 clients. 
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In our initial experiment with simple query we observed that

 
● ~50% instructions come from executor.

● Remaining 50% are from outside executor.

● For deriving further experiments, we have analyzed remaining 

instructions, which are outside executor.

Future Optimization Plan



Experiment:
● Executed simple_update of PGBENCH.
● Measured instructions using callgrind.
● Analyzed all the instructions, which executed before hitting actual 

executor.

Future Optimization Plan

39%

13%

19%

18%

3%
8%

Instruction Division of PGBENCH simple_update

Instruction before executor

PortalManagement

GetCachedPlan

Transaction and Resowner

CreateQueryDescriptor

GetSnapshotData

ReadCommand



Results:

● Most of these instructions are from portal management infrastructures.

~ 39% instructions, that is ~15-20% of total execution instructions.
● 18% instructions are from CreateQueryDescriptor, that is ~10% of total execution 

instructions.
● Remaining are distributed across various functions like ReadCommand, 

GetSnapshotData and many more.

Conclusion:

● In next level of optimization, we can further reduce 25-30% of total execution 

instructions.
● So by including existing experiment, we can save 40-50% of total execution 

instructions.

Future Optimization Plan



Questions?
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Thanks!
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