
© 2013 EDB All rights reserved. 1

Faster PostgreSQL: Improved Writes
and Reads

• Amit Kapila | 2016.05.20

2

● Read Scalability

● Write Scalability

● Future Work on Write Scalability

● Other Performance Work In 9.6

● Performance tour from 9.1 to 9.5

Contents

3

Read-Performance Improvements in 9.6

● Allow Pin/UnpinBuffer to operate in a lockfree manner
– Improves read-mostly cache resident workloads.

– On a large x86 system improvements for readonly pgbench, with a high client
count, of a factor of 8 have been observed.

– It also improves performance of queries which touch the same buffers over
and over at a high frequency (e.g. nested loops over a small inner table).

● Partition the freelist for shared dynahash tables
– This improves the read-only workloads where data doesn't fit in shared buffers,

but fits in RAM. Up to 62% performance improvement is observed on higher
clients.

4

Read Scalability

1 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128
0

50000
100000
150000
200000
250000
300000
350000
400000
450000
500000

pgbench -S -M prepared PG9.6 as of commit 72a98a63

median of 3 5-min runs, scale_factor=300, shared_buffers=8GB

9.5

9.6

Client Count

T
P

S

● Up to 2.5 times performance increase at 128 clients.

● Machine Configuration – Intel x86, 8 sockets, 64 cores, 128 hardware threads, 500GB RAM

● Data Configuration - Data resides on hard disk and WAL on ssd

● Data fits in shared buffers.

5

Read Scalability

1 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128
0

50000

100000

150000

200000

250000

300000

350000

400000

450000

pgbench -S -M prepared PG9.6 as of commit 72a98a63

median of 3 5-min runs, scale_factor=1000, shared_buffers=8G

9.5

9.6

Client Count

T
P

S

● Up to 2.4 times performance increase at 104 clients.

● Machine Configuration – Intel x86, 8 sockets, 64 cores, 128 hardware threads, 500GB RAM

● Data Configuration - Data resides on hard disk and WAL on ssd

● Data doesn't fit in shared buffers.

6

● Read Scalability

● Write Scalability

● Future Work on Write Scalability

● Other Performance Work In 9.6

● Performance tour from 9.1 to 9.5

Contents

7

Reduce ProcArrayLock Contention

● This lock is required in Shared mode for taking snapshot and
in Exclusive mode at transaction commit time.

● When many processes try to commit at once, each one of
them needs to take it one-by-one which results in contention.

● The technique used to reduce this contention is to group the
operation (clear the transaction id) that needs to be performed
under lock.

8

Reduce ProcArrayLock Contention

● This lock is required in Shared mode for taking snapshot and
in Exclusive mode at transaction commit time.

● When many processes try to commit at once, each one of
them needs to take it one-by-one which results in contention.

● The technique used to reduce this contention is to group the
operation (clear the transaction id) that needs to be performed
under lock.

9

Reduce ProcArrayLock Contention

● To group clear the transaction id, each process trying to do so
will add itself to the list.

● First process added to the list will acquire ProcArrayLock and
clear the transaction id's for all the processes that are added
to the list.

● On power-8 machine, I have observed 30% performance
improvement at 64 clients and 133% at 256 clients for
pgbench read-write tests. For details refer my blog:
Improved Writes in PostgreSQL For 9.6

http://amitkapila16.blogspot.in/2015/08/improved-writes-in-postgresql-for-96.html

10

Reduce CLogControlLock Contention

● This lock is required in Shared mode to read transaction
status and in Exclusive mode to write transaction status.

● On larger multi-processor systems, it is possible to have many
CLOG page requests in flight at one time which could lead to
disk access for CLOG page if the required page is not found
in memory.

● Increasing Clog buffers from 32 to 128 buffers leads to good
performance improvement.

● On power-8 machine, ~90% performance improvement has
been observed with unlogged tables for pgbench read-write
tests at 128 clients.

11

Reduce I/O stalls due to checkpoint

● Currently all writes to data files are done via OS page cache
which can sometimes lead to accumulation of many dirty
buffers.

● During checkpoint, we perform fsync after writing all the
buffers to OS page cache which can lead to massive slow
down in other operations happening concurrently.

● In 9.6, writes made via checkpointer, bgwriter and normal user
backends can be flushed after a configurable number of writes
to OS page cache.

● Each of these sources of writes controlled by a separate GUC,
checkpointer_flush_after, bgwriter_flush_after and
backend_flush_after respectively.

12

Performance of read-write

1 8 16 32 64 96 128
0

5000

10000

15000

20000

25000

30000

35000

pgbench -M prepared as of commit 72a98a63

median of 3 30-min runs, scale_factor=300, shared_buffers=8GB

9.5

9.6

Client Count

T
P

S

● Up to 95% performance increase at 128 clients.

● Scaling happens all the way till 128 clients.

● Machine Configuration – Intel x86, 8 sockets, 64 cores, 128 hardware threads, 500GB RAM

● Data Configuration - Data resides on hard disk and WAL on ssd

● Data fits in shared buffers.

13

Bulk Load Scalability

● Bulk loading either via COPY or INSERT tanks when multiple
processes tries to bulk load.

● Currently each relation extension request is processed serially
due to which it tanks at high load.

● Experimentation has revealed that extending the relation
multiple blocks at-a-time improves scalability.

● Number of blocks to extend at a time is decided based on the
load in system with upper limit as 512 blocks.

14

Performance of Bulk Load

1 2 4 8 16 32 64
0

100

200

300

400

500

600

700

COPY of 4bytes 10000 records

median of 3 5-min runs, shared_buffers=4GB

Before patch

After patch

Client Count

T
P

S

● Up to 5 times performance increase at 64 clients.

● Scaling happens till 8 clients and then the performance almost stablizes.

● Machine Configuration – Intel x86, 8 sockets, 64 cores, 128 hardware threads, 500GB RAM

● Data Configuration - Data resides on hard disk and WAL on ssd

● Data fits in shared buffers.

15

Performance of Bulk Load

1 2 4 8 16 32 64
0

20
40
60
80

100
120
140
160

INSERT of 1K length 1000 records

median of 3 5-min runs, shared_buffers=512MB

Before patch

After patch

Client Count

T
P

S

● Up to 3.7 times performance increase at 64 clients.

● Machine Configuration – Intel x86, 8 sockets, 64 cores, 128 hardware threads, 500GB RAM

● Data Configuration - Data resides on hard disk and WAL on ssd

● Data doesn't fit in shared buffers.

16

● Read Scalability

● Write Scalability

● Future Work on Write Scalability

● Other Performance Work In 9.6

● Performance tour from 9.1 to 9.5

Contents

17

Reduce Further CLogControlLock Contention

● When many processes try to commit at once, each one of
them needs to take CLogControlLock one-by-one which
results in contention.

● Multiple Approaches are under discussion to reduce this
contention.

● Group the transaction commit status update and allow only
one process to update it.

● Introduce a new CLOG page level lock.

● Use atomic-ops to operate on clog status bits.

18

WAL Segment Size

1 8 64 128
0

5000

10000

15000

20000

25000

30000

35000

pgbench -M prepared

median of 3 30-minute runs, synchronous_commit=on

Head (950ab82c)

WAL-Seg – 32

WAL-Seg – 64

Client-count

T
P

S

19

WAL Segment Size
● There is a ~20% increase in TPS with wal-size = 32MB and

performance starts increasing after 8 clients.

● As per my analysis, the reason for increase is that it has to
perform lesser flushes for completed segments.

● One idea is that users who can see such a benefit can build
the code with wal-size=32MB or PostgreSQL can use this as a
default value.

● There are few disadvantages of increasing wal segment size
like users require re-initdb, checkpoint issues segment switch
which can lead to space wastage, increase in recovery time
in some cases.

● Ideally, we should find a way where we can leverage the
advantage of this idea without having any disadvantages.

20

WAL Re-Writes
● PostgreSQL always write WAL in 8KB blocks, which could

lead to a lot of re-write of data for small-transactions.
– Consider the case where the amount to be written is usually < 4KB, writing in

8KB chunks could lead double the amount of writes

● Options tried to reduce the re-writes
– Write WAL in chunk size of 4K which is usually the OS page size. This leads

to 35% reduction in WAL writes and the TPS increase for pgbench read-write
workload is 1~5%.

– Write WAL in Exact size as requested by transaction. This leads to reduction
of re-writes by half, but introduce new reads because of unaligned writes which
lead to decrease in performance.

● Whereas we can reduce WAL Re-writes, but till now I am not
able to find a scenario where it can show significant win in
terms of TPS. Inputs are welcome.

21

WALWriteLock Contention

● Hacked the code to comment out WAL flush calls to see the
overhead of WAL flushing. The TPS for read-write pgbench
tests at 64 clients increased from 27871 to 41835.

● From above experiments, it is clear that flush is the main cost
in WAL writing which is no surprise, but still the above data
shows the exact overhead of flush.

● One idea to reduce WALWriteLock contention is to use a
separate WALFlushLock for the flush call. Any other ideas are
welcome.

22

● Read Scalability

● Write Scalability

● Future Work on Write Scalability

● Other Performance Work In 9.6

● Performance tour from 9.1 to 9.5

Contents

23

Performance features in 9.6

● Don't vacuum all-frozen pages
– This should greatly reduce the cost of anti-wraparound vacuuming on large

clusters where the majority of data is never touched between one cycle and
the next, because we'll no longer have to read all of those pages only to find
out that we don't need to do anything with them.

● Add the "snapshot too old" feature
– This feature allows the user to control the bloat by vacuuming the data

retained due to old transactions and error out such old transactions if or when
they try to access the data removed by vacuum. This feature is controlled by a
new old_snapshot_threshold GUC.

24

Performance features in 9.6

● Use quicksort, not replacement selection, for external sorting
– This makes sorting faster except perhaps for very small amounts of working

memory.

● Support using index-only scans with partial indexes in more
cases
– Use index-only scans for cases where restriction clause that is not part of

index-key is implied by the index-predicate.

25

Performance features in 9.6

● Use Foreign Key relationships to infer multi-column join
selectivity
– When FKs are present and we have multi-column join information, plan

estimates will be drastically improved which would result in better plan and
substantial performance improvements for joins in many common cases.

● Speedup 2 Phase Commit by skipping two phase state files in
normal path
– Measured performance gains of 50-100% for short 2PC transactions by

completely avoiding writing files and fsyncing.

26

Performance features in 9.6

● Combining aggregates to avoid duplicating effort
– Queries like "SELECT AVG(x), SUM(x) FROM x" will see a big speedup.

● Avoid pin scan for replay of XLOG_BTREE_VACUUM
– Previously, the replay of XLOG_BTREE_VACUUM (Deletion of item(s) from a

btree page during VACUUM) used to cause replication delays of seconds or in
some cases minutes. This was a significant problem with large indexes.

27

● Read Scalability

● Write Scalability

● Future Work on Write Scalability

● Other Performance Work In 9.6

● Performance tour from 9.1 to 9.5

Contents

28

Test Configuration

● Machine Configuration – Intel x86, 8 sockets, 64 cores, 128 hardware
threads, 500GB RAM

● Data Configuration - Data resides on hard disk and WAL on ssd

● Non-default postgresql.conf settings:

– max_connections = 200
shared_buffers=8GB
checkpoint_timeout =15min
maintenance_work_mem = 1GB
checkpoint_completion_target = 0.9

– For version 9.5 min_wal_size=15GB and max_wal_size=20GB and for
versions < 9.5 checkpoint_segments=300

29

Performance of read-write

● There is an increase of 31% in 9.2 as compare to 9.1 in peak performance at 32 clients.

● No significant gain is observed between 9.2 and 9.3.

● There is an increase of 33% in 9.4 as compare to 9.3 in peak performance at 48 clients.

● There is an increase of 21% in 9.5 as compare to 9.4 in peak performance at 56 clients.

● There is an increase of 118% from 9.1 to 9.5 in peak performance.

1 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128
0

5000

10000

15000

20000

25000

30000

pgbench -M prepared

median of 3 30-minute runs, scale_factor=300, max_connection=200, shared_buffer=8GB.

9.5

9.4

9.3

9.2

9.1

client counts

T
P

S
● Data fits in shared buffers

30

Performance of read-write

● There is an increase of 18% in 9.2 as compare to 9.1 in peak performance at 32 clients.

● No significant gain is observed between 9.2 and 9.3.

● There is an increase of 30% in 9.4 as compare to 9.3 in peak performance at 48 clients.

● There is an increase of 7% in 9.5 as compare to 9.4 in peak performance at 64 clients.

● There is an increase of 73% from 9.1 to 9.5 in peak performance.

1 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128
0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

pgbench -M prepared

median of 3 30-minute runs, scale_factor=1000, max_connection=200, shared_buffer=8GB.

9.5

9.4

9.3

9.2

9.1

client counts

T
P

S
● Data doesn't fit in shared buffers

31

Performance of read-only

● There is a huge performance and scalability increase in 9.2 as compare to 9.1, 414% of peak performance
improvement.

● No significant gain is observed there after.

● Significant performance variation in 9.4 due to unaligned shared memory data structures.

1 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128
0

50000

100000

150000

200000

250000

300000

350000

400000

pgbench -S -M prepared

median of 3 5-minute runs, scale_factor=300, max_connection=200, shared_buffer=8GB.

9.5

9.4

9.4 – max_connection=199

9.3

9.2

9.1

client count

T
P

S

1 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128
0

50000

100000

150000

200000

250000

300000

350000

400000

pgbench -S -M prepared

median of 3 5-minute runs, scale_factor=300, max_connection=200, shared_buffer=8GB.

9.5

9.4

9.4 – max_connection=199

9.3

9.2

9.1

client count

T
P

S

● Data fits in shared buffers

32

Performance of read-only

● There is a huge performance and scalability increase in 9.2 as compare to 9.1, 206% of peak performance
improvement.

● No significant gain is observed in 9.3 and 9.4.

● There is an increase of 68% in 9.5 as compare to 9.4 in peak performance.

● There is an increase of 367% in 9.5 as compare to 9.1 in peak performance.

● Significant performance variation in 9.4 due to unaligned shared memory data structures.

1 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128
0

50000

100000

150000

200000

250000

300000

350000

pgbench -S -M prepared

median of 3 5-minute runs, scale_factor=1000, max_connection=200, shared_buffer=8GB.

9.5

9.4

9.4 – max_connection=199

9.3

9.2

9.1

client count

T
P

S

● Data doesn't fit in shared buffers

33

● Thanks To Mithun C Y and Dilip Kumar for
helping me in getting the performance data for
this presentation.

34

Questions?

35

Thanks!

	Presentation Title
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35

