DB

ENTERPRISEDB

Scalability And Performance
Improvements In PostgreSQL 9.5

- Amit Kapila | 2015.06.19

Contents

* Read Scalability

* Further Improvements In Read Operation
* Other Performance Work In 9.5

* Page Writes

* Write Scalability

Read Scalability

« What 1s Read Scal ability?

- Sel ect operation should scale as
nunber of sessions |Increase, assum ng
enough CPU s.

- But it doesn't because of | ocking.

- W\ are nostly concerned about
wor kl oads where all data Is In
menory.

Read Scalability

« Good boost 1 n scalability.

- When data fits Iin shared buffers
- When data fits i n RAM

EEEEEEEEEEEE

Read Scalability — Data fits in shared buffers

pgbench -S -M prepared, PG9.5dev as of commit 62f5e4
median of 3 5-minute runs, scale factor = 300, max_connections = 300, shared_buffers = 8GB

600000

500000

400000 —94
300000 —— HEAD

TPS

200000
100000

0
1 8 16 32 64 128 256

Client Count

e« Mc used - | BM PONER-8 having 24 cores,
192 hardware threads, 492G RAM

Read Scalability

eIln 9.4 1t peaks at 32 clients, now it
neaks at 64 clients and we can see the
per f ormance | nprovenent upto (~98% and
It I1s better in all cases at higher
client count starting from32 clients

e« The main work which lead to this
| nprovenent 1s commt — ab5194e6

(I mprove LWLock scal ability)

EEEEEEEEEEEE

Read Scalability

« The previous Inmplenentation has a

pot t | eneck around spin | ocks that were
acquired for LWock Acquisition and
Rel ease and the i nplenmentation for 9.5
nas changed the LWL.ock I npl enent ati on
to use atomc operations to nmani pul ate
t he state.

Read Scalability — Data fits in RAM

pgbench -S -M prepared, PG9.5dev as of commit 62f5e4
median of 3 5-minute runs, scale_factor = 1000, max_connections = 300, shared_buffers = 8GB

400000
350000
300000
250000 —94
200000 —— HEAD
150000
100000
50000

0
1 8 16 32 64 128 256

Client Count

TPS

D

8 ENTERPRISEDB

Read Scalability

« Performance | nprovenent

- 25% at 32 client count
- 96% at 64 client count

e« Cormts |lead to this I nprovenent

-commt 1d 5d7962c6 (Change | ocki ng
regi nen around buffer replacenent).

- commt 1d 3acclOc9 (Increase the

nunber of buffer mapping partitions
to 128).

EEEEEEEEEEEE

http://git.postgresql.org/gitweb/?p=postgresql.git;a=commitdiff;h=5d7962c6797c0baae9ffb3b5b9ac0aec7b598bc3
http://git.postgresql.org/gitweb/?p=postgresql.git;a=commitdiff;h=3acc10c997f916f6a741d0b4876126b7b08e3892

Read Scalability

e 2 Mal N bottl enecks

- a Buf FreeLi st LW.ock was getting
acquired to find a free buffer for a
page

- to change the association of buffer
I n buffer mappi ng hash table a LW.ock
| s acquired on a hash partition to
whi ch the buffer to be associ at ed
bel ongs and as there were just 16
such partitions, there was huge
contention when nmultiple clients
starts operating on sane partition

® . ENTERPRISEDB

Read Scalability

e« TO reduce the bottleneck due to first
problem used a spinlock which is held
just | ong enough to pop the freelist or
advance the clock sweep hand, and then
rel eased.

« To reduce the bottl| eneck due to second
problem 1ncrease the buffer partitions
to 128.

e« The crux of this I nprovenent Is that we
had to resolve both the bottl enecks
together to see a nmajor Inprovenent In
scal ability.

"“T . ENTERPRISEDB

Contents

* Read Scalability

* Further Improvements In Read Operation
* Other Performance Work In 9.5

* Page Writes

* Write Scalability

2 . ENTERPRISEDB

Further Improvements In Read Operation

« Dynahash t abl es

- Current Nunber of Partitions
sufficrent?

- Bottleneck is around the spinlock
used to protect any addition or
deletion 1 n hash table (in particul ar
nentries and freelList).

e« Snapshot Acquire
- Contends wth transacti on end

i3 ENTERPRISEDB

Contents

Read Scalability

* Further Improvements In Read Operation
Other Performance Work In 9.5

Page Writes

* Write Scalability

4 ENTERPRISEDB

Sorting Improvements

« Use abbreviated keys for faster sorting
of text, nuneric, datum

e« This can be nmuch faster than the old
way of doing sorting if the first few
bytes of the string are usually
sufficient to resolve the conpari son.

%5 . ENTERPRISEDB

Sorting Improvements

« As an exanpl e

create table stuff as sel ect
randon()::text as a, 'filler filler
filler'::text as b, g as ¢ from
generate series(1l, 1000000) g;

SELECT 1000000
create I ndex on stuff (a);
CREATE | NDEX

e« On PPC64 mc, before this feature,
above operation use to take 6.3 seconds
and after feature It took just 1.9
seconds, which is 3x I nprovenent.

Hoor ay! 16 ‘DB

EEEEEEEEEEEE

PLpgsqgl Improvements

« | npressive speed gains for plpgsql
functions that do el enent-by-el enent
access or update of |arge arrays.

« Reduce |1 O casting and used bi nary
casting for assignnent anbng non-
| denti cal variable types wherever
possi bl e.

i7 . ENTERPRISEDB

BRIN

« Bl ock Range | ndex

« Stores only bounds- per-bl ock-range
e Default 1s 128 Dbl ocks

« Very smal | | ndexes

« Scans all bl ocks for matches

« Used for scanning |arge tables

EEEEEEEEEEEE

Parallel Vacuumdb

e Vacuundb can use concurrent connecti ons
e« Add - <n> to command | i ne

« This option reduces the tinme of the

processing but It also Increases the

| oad on the database server, so use It
caut i ously.

) DB

EEEEEEEEEEEE

WAL Compression

« Optional conpression for full page
| rages 1 n WAL

« Wwal conpressi on=off

Smal | er WAL

Faster wites, faster replication
Costs CPU

Only conpresses FPIs

2 . ENTERPRISEDB

Reduce Lock Level
e Reduce | ock | evels to ShareRowkexcl usi ve

for the foll owng SQ

CREATE TRI GGER (but not DROP or ALTER)

A
A

TER -
TER -

A

TER -

AB
'AB

AB

_E

| E ENABLE TRI GGER
_LE DI SABLE TRI GGER

... ADD CONSTRAI NT FORElI GN KEY

21

EEEEEEEEEEEE

Miscellaneous Performance Improvements

 Improved performance for Index Scan on ">" condition. We can see
performance improvement from 5 to 30 percent.

 Improved speed for CRC calculation which will help in reducing WAL
record formation time.

« Reduced memory allocations during transaction start time. This has
small but measurable performance improvement for simple
transactions.

tD

22 ENTERPRISEDB

Contents

Read Scalability

* Further Improvements In Read Operation
Other Performance Work In 9.5

Page Writes

* Write Scalability

232 . ENTERPRISEDB

Page Writes

. Eage Wites are done for dirty buffers
y
- Checkpoint, when it gets triggered
- Bgwiter, when It gets triggered

- Backend, when it needs to evict dirty
buffer or for sone kind of DDL's |1 ke

ALTER TABLE SET TABLESPACE

e« Both Bgwiter and Backend fl ushes the
page to kernel and the real wite iIs
done by kernel.

EEEEEEEEEEEE

Page Writes

e Tests which shows the wites frequency

e AIl the tests are are done on Power-8
m c

Common non-default settings

shared buffers=8G8;, m n wal size=15@8; nmax _wal size=20GB
checkpoi nt _ti neout =35m n; mai ntenance_work nem = 1GB
checkpoi nt _conpletion _target = 0.9; autovacuum=off
synchronous _commt = off; scale factor=3000

Test used to collect data
./ pgbench -c 64 - 64 -T 1800 -M prepared postgres

tD

25 ENTERPRISEDB

Page Writes

Default : bgwriter_delay=200ms;bgwriter_Iru_maxpages=100;bgwriter_Iru_multiplier=2.0
non_def 1 : bgwriter_delay=10ms;bgwriter_Iru_maxpages=800;bgwriter_Iru_multiplier=4.0
non_def 2 : bgwriter_delay=10ms;bgwriter_Iru_maxpages=1000;bgwriter _Iru_multiplier=10.0

Columns Default non_def 1 non_def 2

checkpoints_timed 0 0 0
checkpoints_req 14 14 14
checkpoint_write time 917261 523436 487685
checkpoint_sync_time 572158 672476 671569
buffers_checkpoint 4336630 4262901 4167658
buffers_clean 849710 10383550 10427094
maxwritten_clean 8328 618 1775
buffers_backend 9607706 104214 103963
buffers_backend_ fsync 0 0 0
buffers_alloc 22417504 21907092 21838094

26

-DB

ENTERPRISEDB

Page Writes - Observations

« Backend wites (buffers backend) have
been reduced significantly on changi ng
bgwiter specific settings.

« Even at nobst aggressive settings
(non_def 2), the wites have not been
reduced to zero.

« Reduced wites by backend | nproves
performance by just 3~4%

- Witing to kernel 1s not that
costly.

EEEEEEEEEEEE

Contents

Read Scalability

* Further Improvements In Read Operation
Other Performance Work In 9.5

Page Writes

* Write Scalability

22 . ENTERPRISEDB

Write Scalability

e« What 1s Wite Scalability?

- Wite operations
(I nsert/Update/ Del ete) should scal e
as as nunber of sessions I ncreases
assum ng enough CPU s.

- But 1t doesn't, because of | ocking
done during Commt operation.

- W are nostly concerned about
wor kl oads where data fits In nenory.

2 . ENTERPRISEDB

Write Scalability

Performance Data

e Data is mainly taken for 2 kind of modes
- synchronous commit = on
— synchronous_commit = off

» 2 kind of scale factors are used

- when all the data fits in shared buffers (scale factor = 300)

- when all the data can't fit in shared buffers, but can fit in
RAM (scale factor = 3000)

- - ENTERPRISEDB

Write Scalability

pgbench -M prepared, PG9.5dev as of commit e5f455f5

median of 3 30-minute runs, synchronous_commit=off, wal_writer_delay=20ms

30000

25000

—scale_factor:300

20000 —— scale_factor:3000

15000 -

10000 _—‘\

5000

D T T T
8 16 32 64 128

Client Count

* Non- default parameters - min_wal_size=15GB; max_wal_size=20GB;
checkpoint_timeout = 35min; maintenance_work _mem = 1GB;
checkpoint_completion_target = 0.9; autovacuum=off

D

31 ENTERPRISEDB

Write Scalability

e Data fits in shared_buffers (scale factor = 300)

- Performance increase upto 64 client count with TPS being
approximately 75 percent higher at 64 client-count as
compare to 8 client count.

« Data doesn't fit in shared buffers, but fit in RAM (scale factor
= 3000)

— we can see performance increase upto 32 client-count with
TPS being 64 percent higher than at 8 client-count and
then it falls there on.

2 - ENTERPRISEDB

Write Scalability

pgbench -M prepared, PG9.5dev as of commit e5f455f5

median of 3 30-minute runs, synchronous_commit=on

30000
40000 —scale_factor:300
15000 —— scale_factor:3000
10000 -

5000 T ——— B

D T T T
8 16 32 64 128

Client Count

TPS

* Non- default parameters - min_wal_size=15GB; max_wal_size=20GB;
checkpoint_timeout = 35min; maintenance _work _mem = 1GB;
checkpoint_completion_target = 0.9; autovacuum=off

-

D

33 ENTERPRISEDB

Write Scalability
e Data fits in shared_buffers (scale factor = 300)

- Performance increase upto 64 client count with TPS being approximately 189
percent higher at 64 client-count as compare to 8 client count which sounds

good.

« Data doesn't fit in shared buffers, but fit in RAM (scale factor
= 3000)

- Apretty flat graph with some performance upto 16 client-count with TPS being
approximately 22 percent higher than at 8 client-count and then it stays as it is

« when the data fits in shared buffers (scale_factor = 300), TPS
at higher client-count (64) in synchronous_commit = on mode
becomes equivalent to TPS in synchronous commit = off
which suggests that either there is more contention around
CLogControlLock in async mode or there is no major
contention due to WAL writing in such loads.

tD

34 ENTERPRISEDB

Write Scalability — General observations

* For both the cases (Asynchronous and Synchronous commit)
when the data doesn't fit in shared buffers (scale factor =
3000), the TPS is quite low and one reason is that backends
might be performing writes themselves.

% - ENTERPRISEDB

Write Scalability — Concurrency Bottlenecks

As per my knowledge, the locks that can lead to contention for
this workload are:

a. ProcArrayLock (used for taking snapshot and at transaction
commit)

b. WALWriteLock (used for performing WALWrites)
c. CLOGControlLock (used to read and write transaction status)
d. WALInsertLocks (used for writing data to WAL buffer)

% ENTERPRISEDB

Questions?

r ENTERPRISEDB

Thanks!

8 - ENTERPRISEDB

	Presentation Title
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38

