
© 2013 EDB All rights reserved. 1

Scalability And Performance
Improvements In PostgreSQL 9.5

• Amit Kapila | 2015.06.19

2

● Read Scalability

● Further Improvements In Read Operation

● Other Performance Work In 9.5

● Page Writes

● Write Scalability

Contents

3

Read Scalability
● What is Read Scalability?

– Select operation should scale as
number of sessions increase, assuming
enough CPU's.

– But it doesn't because of locking.

– We are mostly concerned about
workloads where all data is in
memory.

4

Read Scalability
● Good boost in scalability.

– When data fits in shared_buffers

– When data fits in RAM

5

Read Scalability – Data fits in shared_buffers

1 8 16 32 64 128 256
0

100000

200000

300000

400000

500000

600000

pgbench -S -M prepared, PG9.5dev as of commit 62f5e4

median of 3 5-minute runs, scale_factor = 300, max_connections = 300, shared_buffers = 8GB

9.4

HEAD

Client Count

T
P

S

● M/c used - IBM POWER-8 having 24 cores,
192 hardware threads, 492GB RAM

6

Read Scalability
● In 9.4 it peaks at 32 clients, now it
peaks at 64 clients and we can see the
performance improvement upto (~98%) and
it is better in all cases at higher
client count starting from 32 clients

● The main work which lead to this
improvement is commit – ab5194e6
(Improve LWLock scalability)

7

Read Scalability
● The previous implementation has a
bottleneck around spin locks that were
acquired for LWLock Acquisition and
Release and the implementation for 9.5
has changed the LWLock implementation
to use atomic operations to manipulate
the state.

8

Read Scalability – Data fits in RAM

1 8 16 32 64 128 256
0

50000

100000

150000

200000

250000

300000

350000

400000

pgbench -S -M prepared, PG9.5dev as of commit 62f5e4

median of 3 5-minute runs, scale_factor = 1000, max_connections = 300, shared_buffers = 8GB

9.4

HEAD

Client Count

T
P

S

9

Read Scalability
● Performance Improvement

– 25% at 32 client count

– 96% at 64 client count

● Commits lead to this improvement

– commit id 5d7962c6 (Change locking
regimen around buffer replacement).

– commit id 3acc10c9 (Increase the
number of buffer mapping partitions
to 128).

http://git.postgresql.org/gitweb/?p=postgresql.git;a=commitdiff;h=5d7962c6797c0baae9ffb3b5b9ac0aec7b598bc3
http://git.postgresql.org/gitweb/?p=postgresql.git;a=commitdiff;h=3acc10c997f916f6a741d0b4876126b7b08e3892

10

Read Scalability
● 2 main bottlenecks

– a BufFreeList LWLock was getting
acquired to find a free buffer for a
page

– to change the association of buffer
in buffer mapping hash table a LWLock
is acquired on a hash partition to
which the buffer to be associated
belongs and as there were just 16
such partitions, there was huge
contention when multiple clients
starts operating on same partition

11

Read Scalability
● To reduce the bottleneck due to first
problem, used a spinlock which is held
just long enough to pop the freelist or
advance the clock sweep hand, and then
released.

● To reduce the bottleneck due to second
problem, increase the buffer partitions
to 128.

● The crux of this improvement is that we
had to resolve both the bottlenecks
together to see a major improvement in
scalability.

12

● Read Scalability

● Further Improvements In Read Operation

● Other Performance Work In 9.5

● Page Writes

● Write Scalability

Contents

13

Further Improvements In Read Operation

● Dynahash tables

- Current Number of Partitions
sufficient?

- Bottleneck is around the spinlock
used to protect any addition or
deletion in hash table (in particular
nentries and freeList).

● Snapshot Acquire

- Contends with transaction end

14

● Read Scalability

● Further Improvements In Read Operation

● Other Performance Work In 9.5

● Page Writes

● Write Scalability

Contents

15

Sorting Improvements
● Use abbreviated keys for faster sorting
of text, numeric, datum

● This can be much faster than the old
way of doing sorting if the first few
bytes of the string are usually
sufficient to resolve the comparison.

16

Sorting Improvements
● As an example

create table stuff as select
random()::text as a, 'filler filler
filler'::text as b, g as c from
generate_series(1, 1000000) g;

SELECT 1000000

create index on stuff (a);

CREATE INDEX

● On PPC64 m/c, before this feature,
above operation use to take 6.3 seconds
and after feature it took just 1.9
seconds, which is 3x improvement.
Hooray!

17

PLpgsql Improvements
● Impressive speed gains for plpgsql
functions that do element-by-element
access or update of large arrays.

● Reduce IO casting and used binary
casting for assignment among non-
identical variable types wherever
possible.

18

BRIN
● Block Range Index

● Stores only bounds-per-block-range

● Default is 128 blocks

● Very small indexes

● Scans all blocks for matches

● Used for scanning large tables

19

Parallel Vacuumdb
● vacuumdb can use concurrent connections

● Add -j<n> to command line

● This option reduces the time of the
processing but it also increases the
load on the database server, so use it
cautiously.

20

WAL Compression
● Optional compression for full page
images in WAL

● wal_compression=off

● Smaller WAL

● Faster writes, faster replication

● Costs CPU

● Only compresses FPIs

21

Reduce Lock Level
● Reduce lock levels to ShareRowExclusive
for the following SQL

 CREATE TRIGGER (but not DROP or ALTER)

 ALTER TABLE ENABLE TRIGGER

 ALTER TABLE DISABLE TRIGGER

 ALTER TABLE … ADD CONSTRAINT FOREIGN KEY

22

Miscellaneous Performance Improvements
● Improved performance for Index Scan on ">" condition. We can see

performance improvement from 5 to 30 percent.

● Improved speed for CRC calculation which will help in reducing WAL
record formation time.

● Reduced memory allocations during transaction start time. This has
small but measurable performance improvement for simple
transactions.

23

● Read Scalability

● Further Improvements In Read Operation

● Other Performance Work In 9.5

● Page Writes

● Write Scalability

Contents

24

Page Writes
● Page Writes are done for dirty buffers
by

- Checkpoint, when it gets triggered

- Bgwriter, when it gets triggered

- Backend, when it needs to evict dirty
 buffer or for some kind of DDL's like

 ALTER TABLE SET TABLESPACE

● Both Bgwriter and Backend flushes the
page to kernel and the real write is
done by kernel.

25

Page Writes
● Tests which shows the writes frequency

● All the tests are are done on Power-8
m/c

Common non-default settings

shared_buffers=8GB; min_wal_size=15GB; max_wal_size=20GB

checkpoint_timeout =35min; maintenance_work_mem = 1GB

checkpoint_completion_target = 0.9; autovacuum=off

synchronous_commit = off; scale_factor=3000

Test used to collect data

./pgbench -c 64 -j 64 -T 1800 -M prepared postgres

26

Page Writes

Columns Default non_def_1 non_def_2

checkpoints_timed 0 0 0

checkpoints_req 14 14 14

checkpoint_write_time 517261 523436 487685

checkpoint_sync_time 572158 672476 671569

buffers_checkpoint 4336630 4262901 4167658

buffers_clean 849710 10383550 10427094

maxwritten_clean 8328 618 1775

buffers_backend 9607706 104214 103963

buffers_backend_fsync 0 0 0

buffers_alloc 22417504 21907092 21838094

Default : bgwriter_delay=200ms;bgwriter_lru_maxpages=100;bgwriter_lru_multiplier=2.0
non_def_1 : bgwriter_delay=10ms;bgwriter_lru_maxpages=800;bgwriter_lru_multiplier=4.0
non_def_2 : bgwriter_delay=10ms;bgwriter_lru_maxpages=1000;bgwriter_lru_multiplier=10.0

27

Page Writes - Observations
● Backend writes (buffers_backend) have
been reduced significantly on changing
bgwriter specific settings.

● Even at most aggressive settings
(non_def_2), the writes have not been
reduced to zero.

● Reduced writes by backend improves
performance by just 3~4%.

– Writing to kernel is not that
costly.

28

● Read Scalability

● Further Improvements In Read Operation

● Other Performance Work In 9.5

● Page Writes

● Write Scalability

Contents

29

Write Scalability
● What is Write Scalability?

– Write operations
(Insert/Update/Delete) should scale
as as number of sessions increases
assuming enough CPU's.

– But it doesn't, because of locking
done during Commit operation.

– We are mostly concerned about
workloads where data fits in memory.

30

Write Scalability
 Performance Data

● Data is mainly taken for 2 kind of modes

– synchronous_commit = on

– synchronous_commit = off

● 2 kind of scale factors are used

– when all the data fits in shared buffers (scale_factor = 300)

– when all the data can't fit in shared buffers, but can fit in
RAM (scale_factor = 3000)

31

Write Scalability

● Non- default parameters - min_wal_size=15GB; max_wal_size=20GB;
checkpoint_timeout = 35min; maintenance_work_mem = 1GB;
checkpoint_completion_target = 0.9; autovacuum=off

32

Write Scalability
● Data fits in shared_buffers (scale_factor = 300)

– Performance increase upto 64 client count with TPS being
approximately 75 percent higher at 64 client-count as
compare to 8 client count.

● Data doesn't fit in shared buffers, but fit in RAM (scale_factor
= 3000)

– we can see performance increase upto 32 client-count with
TPS being 64 percent higher than at 8 client-count and
then it falls there on.

33

Write Scalability

● Non- default parameters - min_wal_size=15GB; max_wal_size=20GB;
checkpoint_timeout = 35min; maintenance_work_mem = 1GB;
checkpoint_completion_target = 0.9; autovacuum=off

34

Write Scalability
● Data fits in shared_buffers (scale_factor = 300)

– Performance increase upto 64 client count with TPS being approximately 189
percent higher at 64 client-count as compare to 8 client count which sounds
good.

● Data doesn't fit in shared buffers, but fit in RAM (scale_factor
= 3000)
– A pretty flat graph with some performance upto 16 client-count with TPS being

approximately 22 percent higher than at 8 client-count and then it stays as it is

● when the data fits in shared_buffers (scale_factor = 300), TPS
at higher client-count (64) in synchronous_commit = on mode
becomes equivalent to TPS in synchronous_commit = off
which suggests that either there is more contention around
CLogControlLock in async mode or there is no major
contention due to WAL writing in such loads.

35

Write Scalability – General observations
● For both the cases (Asynchronous and Synchronous commit)

when the data doesn't fit in shared_buffers (scale_factor =
3000), the TPS is quite low and one reason is that backends
might be performing writes themselves.

36

Write Scalability – Concurrency Bottlenecks
As per my knowledge, the locks that can lead to contention for
this workload are:

a. ProcArrayLock (used for taking snapshot and at transaction
commit)

b. WALWriteLock (used for performing WALWrites)

c. CLOGControlLock (used to read and write transaction status)

d. WALInsertLocks (used for writing data to WAL buffer)

37

Questions?

38

Thanks!

	Presentation Title
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38

