All the Dirt on
VACUUM

Jim Nasby, Blue Treble Consulting




Overview

* In-depth look at vacuum in Postgres 9.4

 Code references in slide notes




Topics

MVCC

CLOG and MultiXacts
What can be vacuumed
Freezing

HOT

Vacuum

Autovacuum




MVCC

Postgres uses Multi Version Concurrency Control

Rows are never deleted, they are only marked
as deleted as of a specific transaction

Updates are essentially a delete of the old tuple
and an insert of a new tuple with the new values

Eventually these old, dead tuples must be
removed by “vacuuming”




CLOG & MultiXacts

 The CommitLOG tracks transaction status
(committed, aborted, in-progress)

* MultiXacts store information about row-level
locks, updates and deletes when multiple
transactions are involved.

e Vacuum is responsible for removing
unnecessary data from CLOG and MultiXacts

CLOG and MultiXacts are stored as SLRUs (Simple Least Recently Used).

See src/backend/access/transam/clog.c, multixact.c and slru.c



What can be vacuumed?

Vacuum can only remove rows that no currently
running transaction could see.

Generally limited by oldest running transaction
in the database

Might also be limited by streaming replication
(with hot_standby_feedback enabled), prepared
transactions, or logical decoding

Some special handling for current XIDs and locks

See HeapTupleSatisfiesVacuum() for details.



What can be vacuumed?

Locking a buffer for cleaning has special
requirements (LockBufferForCleanup () )

It is safe for multiple backends to hold a reference
to a buffer, and to do so for a long time

This is not true when attempting to clean a page.

Except for freezing, we will give up on trying to
clean a page if any other backend is referencing it

Every time a backend takes a reference to a buffer, in gets a “pin”. See src/backend/storage/buffer/README.



L.ong-running
transactions prevent

vacuuming from being
effective




Freezing

Transaction IDs (XIDs) and Multi-transaction IDs
(MXIDs) eventually roll-over. Old ones must be
frozen before this happens

X|Ds are created by transactions that modify data.
MXIDs occur when more than one backend

concurrently update/lock a row OR by SELECT
FOR SHARE

If either of these is in danger of rolling over, a
special FREEZE vacuum must be run

See src/backend/access/heap/README.tuplock



Extremely high rates of

update transactions,
FOR SHARE LOCK, or

concurrent FK checks
can cause freeze
problems




Heap Only Tuples

 Normal vacuum is quite expensive, but there are
cases where we can avoid it

e |f an update does not change any index values*
and the new tuple will fit on the same page then
we don'’t need to update indexes. We can
update just the heap.

 Dead HOT tuples are optimistically removed
when heap pages are read

* Indexed values means any column referenced anywhere in an index, including predicates and functions. See src/backend/access/heap/README.HOT.



Avoid referencing”

heavily updated
columns In Indexes

* Indexed values means any column referenced anywhere in an index, including predicates and functions. See src/backend/access/heap/README.HOT.



VACUUM

There are 4 major variations on vacuuming

autovacuum IS a built-in process that attempts to
automatically vacuum anything that needs it

VACUUM FULL completely rebuilds a table from scratch

VACUUM is a regular, manually run vacuum

VACUUM FREEZE is a manual vacuum that forcibly
freezes everything it can




autovacuum

Generally doesn’t need to be tweaked in 9.4

There is no way to control when it runs; do not attempt
to do so with autovacuum naptime

If you do have slow periods (ie: weekends) it can help
to run regular vacuum via cron

Frequent manual vacuum of heavily updated tables is
still a good idea

Documented in sections 2.1.6 and 18.10




VACUUM FULL

Since 9.0, completely rebuilds table and indexes
from scratch, similar to cluster

Takes an exclusive lock on table

Because this is essentially a Create Table As
Select + indexes, it's not really vacuuming
anything

See also https:



https://github.com/reorg/pg_repack

VACUUM

Can not be run in a transaction (or function)

See also vacuumdb shell command

For each table

» Scan heap, remembering tuples to remove
» Scan indexes, removing tuples

» Remove tuples from heap

» If ANALYZE option specified, do analyze.

Update datfrozenxmin and datminmxid




f

malntenance work mem
Isn't large enough, any

vacuum (except full)
must make multiple
DaSSES OVer Indices




vacuum_rel

vacuum () —-> vacuum rel ()
Vacuums a single relation
Does a bunch of mundane stuff, then calls either

cluster rel (fora VACUUM FULL) or

leazs el mgacale)

Before returning, calls itself to vacuum the
TOAST table (but not for autovac)




lazy vacuum rel

vacuum() —-> vacuum rel () ->
lazy vacuum rel ()

Decide if we need to freeze due to XID or MXID
Scan the heap (and indexes): lazy scan heap ()
If it makes sense, lazy truncate heap ()
Clean up the free space map

Update pg_class; log stats if needed

There was a bug in some versions where we updated relfrozenxid and relminmxid even if we hadn’t scanned the whole table, potentially resulting in data

loss.



lazy scan heap

e vacuum() -> vacuum rel () ->
lazy vacuum rel () -> lazy scan heap()

* For each block:

» If not freezing and more than 32 blocks are marked all visible, skip
ahead
If almost out of space, remove index tuples and known heap tuples
Attempt cleanup lock; if not freezing and fail, skip block
Prune page (same as HOT)
Remember dead tuples (if indexes) or remove
Update free space map and visibility map

» Update stats, last pass through indexes




lazy cleanup 1index

e vacuum() -> vacuum rel () ->
lazy vacuum rel () ->
lazy scan heap() ->
lazy cleanup index()

Call index-specific cleanup method. These
methods must scan the entire index, checking
each index pointer against the list of
remembered dead tuples




It is very difficult to
reduce the size of a

bloated Index. Don't
let bloat happen, and
I It does, reindex.




lazy vacuum heap

e vacuum() -> vacuum rel () ->
deavayaZaiciningac Hla(S e
lazy scan heap() ->
lazy vacuum heap ()

 Removes marked-dead tuples from heap

* On each page, defragment page and record
free space




vac update datfrozenxid

e Called by vacuum()
« Updates datfrozenxid and datminmxid

 |f new values for either
» Truncate Commit LOG files (pg_clog)
» Update internal frozen XID and MXID info
» MultiXact files (pg_multixact) are truncated during checkpoint

See ForceTransactionldLimitUpdate() and vac_truncate_clog()



autovacuum

Has two parts, launcher and workers

The launcher prioritizes databases by
» Most in need of XID freeze (usually none)
» Most in need of MXID freeze (usually none)
» Least recently autovacuumed, skipping any database vacuumed less than nap time
ago.

Multiple workers can work on the same database at once
Workers will be canceled if they interfere with other backends

Compare how many autovacuum workers are running against
autovacuum max workers to see if autovaccum is running

into problems.




autovacuum worker

Get list of heap tables & materialized views that need
vacuum or analyze

Get list of TOAST tables that need vacuuming
TEMP tables are ignored

For each relation; attempt to get lock. Skip if unavailable
(unless freeze)

vac_update_datfrozenxid

exit




autovacuum does not

prioritize tables within
a database




autovacuum can
become ineffective for

high demand tables if
too many large tables
need vacuum at once




vacuum cost delay

Well documented; please see section 18.4.4

The critical idea is that once we hit
(auto)vacuum_cost_limit we sleep for
(auto)vacuum_cost_delay. Increasing limit speeds
vacuum; increasing delay slows vacuum.

Don’t slow vacuum too much

On many systems you should set page_dirty lower
than page_miss




In closing...

Long running transactions hurt vacuum

High transaction rates, use of FOR SHARE LOCK and
concurrent FK checks increase the need to FREEZE

Indexes referencing heavily updated columns prevent
HOT

Make maintenance_work_mem large for vacuum
It's very difficult to reduce the size of a bloated index

autovacuum can only do so much




Questions?

iim.Nasby@Bluelreble.com



mailto:jim.Nasby@BlueTreble.com

