
All the Dirt on
VACUUM

Jim Nasby, Blue Treble Consulting

Overview

• In-depth look at vacuum in Postgres 9.4

• Code references in slide notes

Topics
• MVCC

• CLOG and MultiXacts

• What can be vacuumed

• Freezing

• HOT

• Vacuum

• Autovacuum

MVCC
• Postgres uses Multi Version Concurrency Control

• Rows are never deleted, they are only marked
as deleted as of a specific transaction

• Updates are essentially a delete of the old tuple
and an insert of a new tuple with the new values

• Eventually these old, dead tuples must be
removed by “vacuuming”

CLOG & MultiXacts
• The CommitLOG tracks transaction status

(committed, aborted, in-progress)

• MultiXacts store information about row-level
locks, updates and deletes when multiple
transactions are involved.

• Vacuum is responsible for removing
unnecessary data from CLOG and MultiXacts

CLOG and MultiXacts are stored as SLRUs (Simple Least Recently Used).
See src/backend/access/transam/clog.c, multixact.c and slru.c

What can be vacuumed?
• Vacuum can only remove rows that no currently

running transaction could see.

• Generally limited by oldest running transaction
in the database

• Might also be limited by streaming replication
(with hot_standby_feedback enabled), prepared
transactions, or logical decoding

• Some special handling for current XIDs and locks

See HeapTupleSatisfiesVacuum() for details.

What can be vacuumed?
• Locking a buffer for cleaning has special

requirements (LockBufferForCleanup())

• It is safe for multiple backends to hold a reference
to a buffer, and to do so for a long time

• This is not true when attempting to clean a page.

• Except for freezing, we will give up on trying to
clean a page if any other backend is referencing it

Every time a backend takes a reference to a buffer, in gets a “pin”. See src/backend/storage/buffer/README.

Long-running
transactions prevent

vacuuming from being
effective

Freezing
• Transaction IDs (XIDs) and Multi-transaction IDs

(MXIDs) eventually roll-over. Old ones must be
frozen before this happens

• XIDs are created by transactions that modify data.
MXIDs occur when more than one backend
concurrently update/lock a row OR by SELECT
FOR SHARE

• If either of these is in danger of rolling over, a
special FREEZE vacuum must be run

See src/backend/access/heap/README.tuplock

Extremely high rates of
update transactions,

FOR SHARE LOCK, or
concurrent FK checks

can cause freeze
problems

Heap Only Tuples
• Normal vacuum is quite expensive, but there are

cases where we can avoid it

• If an update does not change any index values*
and the new tuple will fit on the same page then
we don’t need to update indexes. We can
update just the heap.

• Dead HOT tuples are optimistically removed
when heap pages are read

* Indexed values means any column referenced anywhere in an index, including predicates and functions. See src/backend/access/heap/README.HOT.

Avoid referencing*
heavily updated

columns in indexes

* Indexed values means any column referenced anywhere in an index, including predicates and functions. See src/backend/access/heap/README.HOT.

VACUUM
• There are 4 major variations on vacuuming

• autovacuum is a built-in process that attempts to
automatically vacuum anything that needs it

• VACUUM FULL completely rebuilds a table from scratch

• VACUUM is a regular, manually run vacuum

• VACUUM FREEZE is a manual vacuum that forcibly
freezes everything it can

autovacuum
• Generally doesn’t need to be tweaked in 9.4

• There is no way to control when it runs; do not attempt
to do so with autovacuum_naptime

• If you do have slow periods (ie: weekends) it can help
to run regular vacuum via cron

• Frequent manual vacuum of heavily updated tables is
still a good idea

• Documented in sections 2.1.6 and 18.10

VACUUM FULL
• Since 9.0, completely rebuilds table and indexes

from scratch, similar to cluster

• Takes an exclusive lock on table

• Because this is essentially a Create Table As
Select + indexes, it’s not really vacuuming
anything

• See also https://github.com/reorg/pg_repack

https://github.com/reorg/pg_repack

VACUUM
• Can not be run in a transaction (or function)

• See also vacuumdb shell command

• For each table
‣ Scan heap, remembering tuples to remove
‣ Scan indexes, removing tuples
‣ Remove tuples from heap
‣ If ANALYZE option specified, do analyze.

• Update datfrozenxmin and datminmxid

If
maintenance_work_mem

isn’t large enough, any
vacuum (except full)
must make multiple
passes over indices

vacuum_rel

• vacuum() -> vacuum_rel()

• Vacuums a single relation

• Does a bunch of mundane stuff, then calls either
cluster_rel (for a VACUUM FULL) or
lazy_vacuum_rel()

• Before returning, calls itself to vacuum the
TOAST table (but not for autovac)

lazy_vacuum_rel

• vacuum() -> vacuum_rel() ->
lazy_vacuum_rel()

• Decide if we need to freeze due to XID or MXID

• Scan the heap (and indexes): lazy_scan_heap()

• If it makes sense, lazy_truncate_heap()

• Clean up the free space map

• Update pg_class; log stats if needed

There was a bug in some versions where we updated relfrozenxid and relminmxid even if we hadn’t scanned the whole table, potentially resulting in data
loss.

lazy_scan_heap

• vacuum() -> vacuum_rel() ->
lazy_vacuum_rel() -> lazy_scan_heap()

• For each block:
‣ If not freezing and more than 32 blocks are marked all visible, skip

ahead
‣ If almost out of space, remove index tuples and known heap tuples
‣ Attempt cleanup lock; if not freezing and fail, skip block
‣ Prune page (same as HOT)
‣ Remember dead tuples (if indexes) or remove
‣ Update free space map and visibility map

• Update stats, last pass through indexes

lazy_cleanup_index

• vacuum() -> vacuum_rel() ->
lazy_vacuum_rel() ->
lazy_scan_heap() ->
lazy_cleanup_index()

• Call index-specific cleanup method. These
methods must scan the entire index, checking
each index pointer against the list of
remembered dead tuples

It is very difficult to
reduce the size of a
bloated index. Don’t

let bloat happen, and
if it does, reindex.

lazy_vacuum_heap

• vacuum() -> vacuum_rel() ->
lazy_vacuum_rel() ->
lazy_scan_heap() ->
lazy_vacuum_heap()

• Removes marked-dead tuples from heap

• On each page, defragment page and record
free space

vac_update_datfrozenxid

• Called by vacuum()

• Updates datfrozenxid and datminmxid

• If new values for either
‣ Truncate Commit LOG files (pg_clog)
‣ Update internal frozen XID and MXID info
‣ MultiXact files (pg_multixact) are truncated during checkpoint

See ForceTransactionIdLimitUpdate() and vac_truncate_clog()

autovacuum
• Has two parts, launcher and workers

• The launcher prioritizes databases by
‣ Most in need of XID freeze (usually none)
‣ Most in need of MXID freeze (usually none)
‣ Least recently autovacuumed, skipping any database vacuumed less than nap time

ago.

• Multiple workers can work on the same database at once

• Workers will be canceled if they interfere with other backends

• Compare how many autovacuum workers are running against
autovacuum_max_workers to see if autovaccum is running
into problems.

autovacuum worker
• Get list of heap tables & materialized views that need

vacuum or analyze

• Get list of TOAST tables that need vacuuming

• TEMP tables are ignored

• For each relation; attempt to get lock. Skip if unavailable
(unless freeze)

• vac_update_datfrozenxid

• exit

autovacuum does not
prioritize tables within

a database

autovacuum can
become ineffective for
high demand tables if
too many large tables
need vacuum at once

vacuum cost delay
• Well documented; please see section 18.4.4

• The critical idea is that once we hit
(auto)vacuum_cost_limit we sleep for
(auto)vacuum_cost_delay. Increasing limit speeds
vacuum; increasing delay slows vacuum.

• Don’t slow vacuum too much

• On many systems you should set page_dirty lower
than page_miss

In closing…
• Long running transactions hurt vacuum

• High transaction rates, use of FOR SHARE LOCK and
concurrent FK checks increase the need to FREEZE

• Indexes referencing heavily updated columns prevent
HOT

• Make maintenance_work_mem large for vacuum

• It's very difficult to reduce the size of a bloated index

• autovacuum can only do so much

Questions?
!

jim.Nasby@BlueTreble.com

mailto:jim.Nasby@BlueTreble.com

