
Keith's Ramblings…
WARNING: If accidentally read, induce vomiting

A Large Database Does Not Mean Large
shared_buffers

10 Comments

A co-worker of mine did a blog post last year that I’ve found incredibly useful
when assisting clients with getting shared_buffers tuned accurately.

Setting shared_buffers the hard way

You can follow his queries there for using pg_buffercache to find out how your
shared_buffers are actually being used. But I had an incident recently that I
thought would be interesting to share that shows how shared_buffers may not
need to be set nearly as high as you believe it should. Or it can equally show you
that you that you definitely need to increase it. Object names have been
sanitized to protect the innocent.

To set the stage, the database total size is roughly 260GB and the use case is
high data ingestion with some reporting done on just the most recent data at the
time. shared_buffers is set to 8GB. The other thing to note is that this is the only
database in the cluster. pg_buffercache has info for all databases in the cluster,
but when you join against pg_class to get object information, you can only do
this on individual database at a time.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

database=# SELECT c.relname
, pg_size_pretty(count(*) * 8192) as buffered
, round(100.0 * count(*) / (SELECT setting FROM pg_settings WHERE name='shared_buffers'
, round(100.0 * count(*) * 8192 / pg_relation_size(c.oid),1) AS percent_of_relation

FROM pg_class c
INNER JOIN pg_buffercache b ON b.relfilenode = c.relfilenode
INNER JOIN pg_database d ON (b.reldatabase = d.oid AND d.datname = current_database())
WHERE pg_relation_size(c.oid) > 0
GROUP BY c.oid, c.relname
ORDER BY 3 DESC
LIMIT 10;

relname | buffered | buffers_percent | percent_of_relation
-------------------------------------+----------+-----------------+---------------------
table1 | 7479 MB | 91.3 | 9.3
table2 | 362 MB | 4.4 | 100.0
table3 | 311 MB | 3.8 | 0.8
table4 | 21 MB | 0.3 | 100.0
pg_attrdef_adrelid_adnum_index | 16 kB | 0.0 | 100.0
table4 | 152 kB | 0.0 | 7.7

A Large Database Does Not Mean Large shared_b... http://www.keithf4.com/a-large-database-does-no...

1 of 7 06/17/2015 02:42 PM

You can see that table1 is taking up a vast majority of the space here and it’s a
large table, so only 9% of it is actually in shared_buffers. What’s more
interesting though is how much of the space for that table is actually in high
demand.

Data blocks that go into and come out of postgres all go through shared_buffers.
Just to review the blog post I linked to, whenever a block is used in shared
memory, it increments a clock-sweep algorithm that ranges from 1-5, 5 being
extremely high use data blocks. This means high usage blocks are likely to be
kept in shared_buffers (if there’s room) and low usage blocks will get moved out
if space for higher usage ones is needed. We believe that a simple insert or
update sets a usagecount of 1. So, now we look at the difference when usage
count is dropped to that.

So the shared_buffers is actually getting filled mostly by the data ingestion
process, but relatively very little of it is of any further use afterwards. If
anything of greater importance was needed in shared_buffers, there’s plenty of
higher priority space and that inserted data would quickly get flushed out of
shared memory due to having a low usagecount.

So with having pg_buffercache installed, we’ve found that the below query
seems to be a good estimate on an optimal, minimum shared_buffers setting

20
21
22
23

index5 | 16 kB | 0.0 | 14.3
pg_index_indrelid_index | 40 kB | 0.0 | 8.8
pg_depend_depender_index | 56 kB | 0.0 | 1.0
pg_cast_source_target_index | 16 kB | 0.0 | 100.0

1
2
3
4
5
6
7
8
9

database=# SELECT pg_size_pretty(count(*) * 8192)
FROM pg_class c
INNER JOIN pg_buffercache b ON b.relfilenode = c.relfilenode
INNER JOIN pg_database d ON (b.reldatabase = d.oid AND d.datname = current_database())
WHERE c.oid::regclass = 'table1'::regclass
AND usagecount >= 2;
pg_size_pretty

2016 kB

1
2
3
4
5
6
7
8
9

database=# SELECT pg_size_pretty(count(*) * 8192)
FROM pg_class c
INNER JOIN pg_buffercache b ON b.relfilenode = c.relfilenode
INNER JOIN pg_database d ON (b.reldatabase = d.oid AND d.datname = current_database())
WHERE c.oid::regclass = 'table1'::regclass
AND usagecount >= 1;
pg_size_pretty

4946 MB

1
2
3

database=# SELECT pg_size_pretty(count(*) * 8192) as ideal_shared_buffers
FROM pg_class c
INNER JOIN pg_buffercache b ON b.relfilenode = c.relfilenode

A Large Database Does Not Mean Large shared_b... http://www.keithf4.com/a-large-database-does-no...

2 of 7 06/17/2015 02:42 PM

This is the sort of query you would run after you have had your database
running through your expected workload for a while. Also, note my use of the
key word minimal. This does not account for unexpected spikes in
shared_buffers usage that may occur during a session of reporting queries or
something like that. So you definitely want to set it higher than this, but it can at
least show you how effectively postgres is using its shared memory. In general
we’ve found the typical suggestion of 8GB to be a great starting point for
shared_buffers.

So, in the end, the purpose of this post was to show that shared_buffers is
something that needs further investigation to really set optimally and there is a
pretty easy method to figuring it out once you know where to look.

UPDATE:

So, as someone commented below, you don’t really need to join against pg_class
& pg_database to get the ideal suggested minimum. This also avoids having to
manually do totals across multiple databases in the cluster. The reason for
joining against those two was to be able to identify which databases and objects
the blocks in shared buffers were associated with. pg_class can only identify the
objects of in the database you’re in.

Also, for really high traffic databases with fluctuating query activity, the
suggested minimum query isn’t something you can run just once. It has to be
run multiple times because the values can vary drastically. Below are the
results of running the shorter query just a few times in less than a 1 minute time
period on a different client of ours that has a much different traffic pattern
(OLTP) than the one above. There’s 46 databases in the cluster with a total size
of roughly 900GB, with 800GB in one database, 30GB in the next largest and
quickly getting smaller from there. For this one we actually have shared_buffers
set down to 4GB and it’s been working great for years.

4
5
6
7
8

INNER JOIN pg_database d ON (b.reldatabase = d.oid AND d.datname = current_database())
WHERE usagecount >= 3;
ideal_shared_buffers

640 MB

1
2
3
4
5
6
7
8
9
10

kfiske@database=# SELECT pg_size_pretty(count(*) * 8192) as ideal_shared_buffers
FROM pg_buffercache b
WHERE usagecount >= 3;
ideal_shared_buffers

1431 MB
(1 row)

Time: 259.196 ms
kfiske@database=# SELECT pg_size_pretty(count(*) * 8192) as ideal_shared_buffers

A Large Database Does Not Mean Large shared_b... http://www.keithf4.com/a-large-database-does-no...

3 of 7 06/17/2015 02:42 PM

Written by Keith

September 11th, 2014 at 2:53 pm

Posted in PostgreSQL

Tagged with monitoring, postgresql, tuning

« Checking for PostgreSQL Bloat
A Small Database Does Not Mean Small shared_buffers »

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

FROM pg_buffercache b
WHERE usagecount >= 3;
ideal_shared_buffers

1566 MB
(1 row)

Time: 495.255 ms
kfiske@database=# SELECT pg_size_pretty(count(*) * 8192) as ideal_shared_buffers
FROM pg_buffercache b
WHERE usagecount >= 3;
ideal_shared_buffers

1217 MB
(1 row)

Time: 278.755 ms
kfiske@database=# SELECT pg_size_pretty(count(*) * 8192) as ideal_shared_buffers
FROM pg_buffercache b
WHERE usagecount >= 3;
ideal_shared_buffers

1092 MB
(1 row)

Time: 260.278 ms
kfiske@database=# SELECT pg_size_pretty(count(*) * 8192) as ideal_shared_buffers
FROM pg_buffercache b
WHERE usagecount >= 3;
ideal_shared_buffers

999 MB
(1 row)

Time: 251.809 ms

A Large Database Does Not Mean Large shared_b... http://www.keithf4.com/a-large-database-does-no...

4 of 7 06/17/2015 02:42 PM

10 Comments Keith's Ramblings keithf4

Share⤤ Sort by Best

Join the discussion…

• Reply •

Noah Yetter • 9 months ago

Couple of problems with this:

1. There's an implicit argument here that all other things equal, a smaller shared_buffers is

better, or stated differently, that you're better off relying on OS disk caching. That

argument seems weak. What's the evidence that this is true?

2. This method will only ever recommend a LOWER value of shared_buffers than your

current setting, because you can't count buffers you don't have. If I'm running 4GB and my

"ideal" value is 16GB, it will take a lot of testing iterations and attendant postgres restarts

to find that out.

• Edit • Reply •

keithf4 • 9 months ago

see more

Mod > Noah Yetter

1. I've made no such implicit arguments. I'm just saying that a large database does

not necessarily mean a large shared_buffers setting is needed. After working with

many clients over the years, and talking to people at conferences, I've noticed that

the many people that haven't really looked into what shared_buffers is used for

assume bigger is better. One of the few times we've seen setting shared_buffers to

a very high amount work reliably well the majority of the time is when you can fit

the entire database into memory. Outside of that, setting it very high when that

amount is only a small fraction of the database you can run into double-buffering.

Then relying on the OS cache can actually be beneficial if the majority of your high

use data isn't being kept in shared_buffers. Check out Greg Smith's High

Performance PostgreSQL book and blog posts by Robert Haas for more in-depth

discussions on the repercussions of setting shared_buffers higher or lower than it

needs to be.

2. If you look at the original blog post I refer too, you can see the methods used

when you don't have enough shared_buffers available. If you've got a lot of high

demand data filling an amount close to your current shared_buffers setting, then

you can likely benefit from increasing it. Of course it's always going to be less, but

Jim Nasby 9 months ago

 Recommend

Share ›

Share ›

A Large Database Does Not Mean Large shared_b... http://www.keithf4.com/a-large-database-does-no...

5 of 7 06/17/2015 02:42 PM

My Stuff

Presentations
Projects
Publications

DonateDonate

Steam Wishlist

Search for: Search

Recent Posts

PG Partition Manager v2.0.0 – Background Worker, Better Triggers &
Extension Versioning Woes
PG Partman – Sub-partitioning
A Small Database Does Not Mean Small shared_buffers
A Large Database Does Not Mean Large shared_buffers
Checking for PostgreSQL Bloat

Tags

backup bloat circonus dst extensions fdw full-text search logging mimeo minecraft

monitoring nagios oracle partitioning pg_dump pg_extractor pg_jobmon

pg_partman pg_upgrade postgresql replication schema shared_buffers tips
tuning wuala

Recent Comments

PostgreSQL Partition Manager at Keith's Ramblings… on PG Partition
Manager v2.0.0 – Background Worker, Better Triggers & Extension
Versioning Woes
keithf4 on PG Partition Manager v2.0.0 – Background Worker, Better
Triggers & Extension Versioning Woes
Josh Berkus on PG Partition Manager v2.0.0 – Background Worker, Better
Triggers & Extension Versioning Woes
PG Partition Manager v2.0.0 – Background Worker, Better Triggers &
Extension Versioning Woes at Keith's Ramblings… on PostgreSQL Partition
Manager
otaviofcs on Monitoring Streaming Slave Lag Effectively

0

A Large Database Does Not Mean Large shared_b... http://www.keithf4.com/a-large-database-does-no...

6 of 7 06/17/2015 02:42 PM

About Me

I'm a database administrator with OmniTI, Inc and play way too many video
games. You can find me lurking in #postgresql on Freenode IRC
Site hosted by DigitalOcean

Archives

June 2015
March 2015
October 2014
September 2014
August 2014
May 2014
February 2014
January 2014
October 2013
September 2013
July 2013
April 2013
March 2013
February 2013
January 2013
December 2012
November 2012
October 2012
July 2012
June 2012
April 2012
March 2012
February 2012
January 2012

The Journalist template by Lucian E. Marin — Built for WordPress

A Large Database Does Not Mean Large shared_b... http://www.keithf4.com/a-large-database-does-no...

7 of 7 06/17/2015 02:42 PM

