
Jeremy Smith

MANAGING YOUR
SCHEMA

Using migrations for consistency,
repeatability, and sanity

ABOUT ME

• Senior Software Engineer, Technical Lead

• ~Equal parts developer and DBA

• Background in geoscience

• Used migrations for ~7 years

• Contact: jsmith@unavco.org

mailto:jsmith@unavco.org

ABOUT UNAVCO

• NSF and NASA funded

• Non-profit

• Consortium

• Facilitates geoscience
research and education

www.unavco.org

http://www.unavco.org/

ABOUT UNAVCO

• Used PostgreSQL for ~10 years

• Store detailed info about the
stations, time series data, etc.

• ~500 tables, ~500 GB

www.unavco.org

http://www.unavco.org/

OUTLINE

• Why Use Migrations?

• Intro to Flyway

• Flyway usage

• Writing effective migrations

• Integration with Jenkins

Development
Database

Development
Database

Development
Database

Continuous Integration Database(s)

Test Database

Production Database

THE PROBLEM

Image Source: http://www.amazon.com/
Hotfixes

http://www.amazon.com/Lego-Series-Computer-Programmer-Figure/dp/B007YCWTQU

THE PROBLEM

• Keep the databases in sync with each other?

• Synchronize software releases with database changes?

• Determine the current state of each database?

• Create a new development or test database?

How To:

MIGRATIONS
• Migrations are versioned changes to your schema or data

V.1: CREATE TABLE USERS…
V.2: ALTER TABLE USERS…
V.3: CREATE INDEX ON TABLE USERS…
V.4: CREATE TABLE USER_TYPES…

MIGRATIONS

• Migration Versioning gives you:

• The current state of a database

• A clear upgrade path

Empty
Database V.2 V.3 V.4V.1

MIGRATIONS

• Migrations are code, should be kept in version control

• Version control gives you:

• Ability to share changes with other developers/admins

• Integration with build and test tools

• History

FLYWAY

• Migration Tool
• Open Source, ~5 years old
• Cross-platform
• Written in Java, but does not require Java knowledge
• Multiple interfaces: command line, Java API, Gradle, Ant, Maven
• Supports PostgreSQL, Oracle, SQL Server, MySQL, SQLite, etc.
• Does NOT support reversible migrations

http://flywaydb.org

http://flywaydb.org

FLYWAY COMMAND LINE

• For users who do not use the JVM or do not want to use a build
tool (Gradle, Maven, etc.)

• Optionally bundled with the JRE for OS X, Windows, Linux

• Can also use system Java - best option for multiple operating
systems

• Download from here: http://flywaydb.org/documentation/
commandline/

http://flywaydb.org/documentation/commandline/

Source: http://flywaydb.org/documentation/commandline/

Directory Structure

FLYWAY COMMAND LINE

http://flywaydb.org/documentation/commandline/

FLYWAY CONFIGURATION

• Highly configurable, but has good defaults

• Must set connection parameters

• All settings in both config file and command line parameters

• command-line parameters override items in config file

FLYWAY: CREATING MIGRATIONS

• One file per migration

• Migrations can be written in plain SQL or Java

• Use Java migrations for advanced data changes

• Use SQL migrations for everything else

• No special languages or XML!

HOW TO SET MIGRATION VERSION

• prefix: default V

• version: version parts separated by dots or underscores

• separator: __ separates version and description

• description: describes the migration

• suffix: default sql

Example File Name:
V0002_00__Fix_things_I_broke_in_V1.sql

Versions are determined from the filename

VERSIONING RECOMMENDATIONS

• Leading zeros for lexical ordering

• Version parts let you break up large migrations

V0001_00__The_description.sql

HOW TO APPLY MIGRATIONS

• Searches in specific folders for migrations

• Applies new migrations in order

• Each migration runs in its own transaction

• On failure, migration is rolled back and no further migrations
applied

flyway migrate

FLYWAY METADATA TABLE
First migrate command creates

schema_version table
 Table "public.schema_version"
 Column | Type | Modifiers
----------------+-----------------------------+------------------------
 version_rank | integer | not null
 installed_rank | integer | not null
 version | character varying(50) | not null
 description | character varying(200) | not null
 type | character varying(20) | not null
 script | character varying(1000) | not null
 checksum | integer |
 installed_by | character varying(100) | not null
 installed_on | timestamp without time zone | not null default now()
 execution_time | integer | not null
 success | boolean | not null
Indexes:
 "schema_version_pk" PRIMARY KEY, btree (version)
 "schema_version_ir_idx" btree (installed_rank)
 "schema_version_s_idx" btree (success)
 "schema_version_vr_idx" btree (version_rank)

MIGRATE IMPORTANT OPTIONS

• -url: jdbc url to the database (e.g. jdbc:postgresql://localhost:5432/mydb)

• -target: maximum version (e.g. -target=0001.05, default is latest version)

• -validateOnMigrate: if true, verify checksum of all applied migrations
(default: true)

HOW TO GET CURRENT VERSION

• Prints a table of migration status

• Shows applied (State=Success), new (State=Pending), and failed
(State=Failure) migrations.

• Failure means the migration caused an error and could not be
rolled back. Will not happen in PostgreSQL.

• Use as a test for the -target option before running migrate

flyway info

HOW TO START OVER

• Drops all objects in specified schemas

• Never run in production…

• -schemas option: comma separated list of schemas managed by
flyway (default: default schema of connection)

• Previously missed some types of objects, but has improved
significantly (does not handle extensions, see https://github.com/
flyway/flyway/issues/100#issuecomment-93705648 for a
workaround)

flyway clean

https://github.com/flyway/flyway/issues/100#issuecomment-93705648

HOW TO CHECK APPLIED MIGRATIONS

• Check that applied migrations have not changed

• Checks names, types (sql or java), and checksums

flyway validate

flyway repair

• Repairs the flyway metadata table

• Corrects wrong checksums

• Removes failed migrations from metadata table

• Create a base version from the existing production database

• Dump out the schema (pg_dump —schema-only)

• Include reference data (pg_dump —data-only —table=…)

• Put schema and reference data into a base migration:
V0001_00__Base_version.sql

More Info: http://flywaydb.org/documentation/existing.html

HOW TO INTEGRATE FLYWAY WITH
AN EXISTING DATABASE

It will take some work, but it’s worth it

http://flywaydb.org/documentation/existing.html

HOW TO INTEGRATE FLYWAY WITH
AN EXISTING DATABASE

• Run flyway baseline on production database

• Adds schema_version table to existing database

• Adds metadata to schema_version so flyway knows to skip
migrations

• Use baselineVersion and baselineDescription options

• Start writing migrations with V0002

FLYWAY COMMANDS

• Migrate

• Clean

• Info

• Validate

• Baseline

• Repair

WRITING GOOD MIGRATIONS

Source: wikipedia.org

http://wikipedia.org

WRITING GOOD MIGRATIONS

What type of changes do you think should be
in migrations?

WRITING GOOD MIGRATIONS

• All structural changes: creating or altering tables, functions,
indexes, views, etc.

• Reference data

• Users…?

What should be in a migration?

THE PROBLEM WITH USERS

• Users are cluster-wide

• flyway clean does not remove users

• How to keep users and permissions in sync?

If you have one database per cluster, remove users after clean,
using a callback (flyway/sql/afterClean.sql)

do $$
 declare rolename text;
 begin
 for rolename in select rolname FROM pg_roles
 WHERE rolname NOT ILIKE '%postgres%'
 loop
 execute 'DROP ROLE ' || rolename;
 end loop;
 end $$;

THE PROBLEM WITH USERS

WRITING GOOD MIGRATIONS

• Keep them small, for readability

• Use minor version numbers to break up big migrations

• e.g. V0002_00__User_tables.sql, V0002_01__User_views.sql

• Skip some major version numbers if your project will not go into
production for a while

Other Tips

• A widely used tool for :

• Automating builds

• Automating Continuous Integration Tests

• Builds projects on change in source code or on a schedule

INTEGRATION WITH JENKINS

• Watch flyway directory and software directories for changes

• Works best with a cluster per Jenkins project

• Create a simple, fail-fast project to just build the db, which triggers
more complex downstream projects

Setting up your Jenkins Project

INTEGRATION WITH JENKINS

• Projects should be parameterized:

• DB_HOST, DB_PORT, DB_NAME

• For simple databases, use clean and migrate:

${WORKSPACE}/flyway/flyway -url=jdbc:postgresql://${DB_HOST}:
${DB_PORT}/${DB_NAME} clean migrate

Setting up your Jenkins Project

INTEGRATION WITH JENKINS

• Alternatively, use postgres tools:

dropdb --if-exists -U postgres -h ${DB_HOST} -p ${DB_PORT}
 ${DB_NAME}

psql -U postgres -h ${DB_HOST} -p ${DB_PORT} -d template1 -f
 "${WORKSPACE}/reset_users.sql"

createdb -U postgres -h ${DB_HOST} -p ${DB_PORT}
encoding=UTF-8 ${DB_NAME}

${WORKSPACE}/flyway/flyway -url=jdbc:postgresql://${DB_HOST}:
${DB_PORT}/${DB_NAME} migrate

INTEGRATION WITH JENKINS

• If you need to load test data at specific schema versions, use
multiple calls to migrate, with the target option:

${WORKSPACE}/flyway/flyway -url=jdbc:postgresql://${DB_HOST}:
${DB_PORT}/${DB_NAME} -target=0005.00 migrate

Load data here

${WORKSPACE}/flyway/flyway -url=jdbc:postgresql://${DB_HOST}:
${DB_PORT}/${DB_NAME} migrate

SUMMARY

• Migrations:

• keep your databases in sync

• Show the current state of the database

• Allow you to test database changes

SUMMARY

• Flyway:

• is a powerful and flexible migration tool

• applies migrations (in the proper order), shows you the current
status, and can clean out schemas for you

• Use flyway with Jenkins to run integration tests when any schema
or software change is checked in

FINAL REMINDER

All structural changes must be in a migration!

