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Overview

● What is JSON? Why use JSON?
● Quick review of 9.2, 9.3 features
● 9.4 new features
● Future work



  

What is JSON?

● Data serialization format
– rfc  7158, previously rfc 4627

● Lightweight
● Human readable
● Becoming ubiquitous
● Simpler and more compact than XML



  

What it looks like

{
   "books" : [
     { "title": "Catch 22”, "author": "Joseph Heller"},
     { "title": "Catcher in the Rye", "author": "J. D. Salinger"}
    ],
   "publishers": [
     { "name": "Random House" },
     { "name": "Penguin" }
   ],
    "active": true,
    "version": 35,
    "date": "2003-09-13",
    “reference”: null
}

    

Scalars:
● quoted strings
● numbers
● true, false, null

No extensions

No date/time types



  

Why use it?

● Everyone is moving that way
● Understood everywhere there is a JavaScript 

interpreter
– Especially browsers

●  ... and in a large number of other languages
– e.g. Perl, Python

● node.js is becoming very widely used
● More compact than XML
● Most applications don't need the richer 

structure of XML



  

Why not use it?

● Overly verbose
● Field names are repeated

● Arguably less readable than, say, YAML
● Not suitable for huge objects
● Not quite type rich enough

– No timestamp support



  

Review – pre 9.2 facilities

Nothing – store JSON as text
● No validation
● No JSON production
● No JSON extraction



  

Review – 9.2 data type

New JSON type
● Stored as text
● Reasonably performant state-based 

validating parser
● Kudos: Robert Haas



  

Review – 9.2  production functions

● Turn non-JSON data into JSON
● row_to_json(anyrecord)
● array_to_json(anyarray)
● Optional second param for pretty printing

● My humble contribution ☺



  

What's missing?

● JSON production features are incomplete
● JSON processing is totally absent

● Have to use PLV8, PLPerl or some such



  

9.3 Features – JSON production

● to_json(any)
● Can be used on any datum, not just 

arrays and records

● json_agg(record)
● Much faster than 

array_to_json(array_agg(record))



  

9.3 and casts to JSON

● Production functions honor casts to JSON 
for non-builtin types

● Not needed for builtins, as we know 
how to convert them

● Saves syscache lookups where we 
know it's not necessary

● Is this wise, or necessary?
– Counter case is ISO 8601 Timestamps
– Workaround – use to_char()



  

9.3 hstore and JSON

● hstore_to_json(hstore)
● Also used as a cast function

● hstore_to_json_loose(hstore)
● Uses heuristics about whether or not 

certain possibly  numeric and boolean 
values need to be quoted.



  

9.3 JSON parser rewrite

● New parser uses recursive descent 
pattern

● Caller can supply event handlers for 
certain events

● c.f. XML SAX parsers
● Validator uses NULL handlers for all 

events

● Tokenizing routines of previous parser 
largely kept



  

9.3 JSON processing functions

● All leverage new parser API
● Operators give a more natural style to 

extraction operations
● Many have two forms, producing either 

JSON output, which can be further 
processed, or text output, which cannot.

● Text output is de-escaped and 
dequoted



  

9.3 extraction operators (1)

● -> fetch an array element or object 
member as json

● '[4,5,6]'::json->2  ⟹ 6
– json arrays are 0 based, unlike SQL 

arrays
● '{"a":1,"b":2}'::json->'b' ⟹ 2



  

9.3 extraction operators (2)

● ->> fetch an array element orobject 
member as text

● '["a","b","c"]'::json->2 ⟹ c
– Instead of "c"



  

9.3 extraction operators (3)

● #> and #>> fetch data pointed at by a 
path

● Path is an array of text elements
● Treats arrays correctly by some trying to 

treat path element as an integer of 
necessary

● '{"a":[6,7,8]}'::json#>'{a,1}' ⟹ 7
●



  

9.3 extraction functions

● json_extract_path(json, VARIADIC 
path_elems text[]);

● json_extract_path_text(json, VARIADIC 
path_elems text[]);

● Same as #> and #>> operators, but 
you can pass the path as a variadic 
array

● json_extract_path('{"a":[6,7,8]}','a','1') 
⟹ 7



  

9.3 turn JSON into records

● CREATE TYPE x AS (a int, b int);
● SELECT * FROM 

json_populate_record(null::x, 
'{"a":1,"b":2}', false);

● SELECT * FROM 
json_populate_recordset(null::x,'[{"a":1,"
b":2},{"a":3,"b":4}]', false);



  

9.3 turn JSON into key/value pairs

● SELECT * FROM 
json_each('{"a":1,"b":"foo"}')

● SELECT * FROM 
json_each_text('{"a":1,"b":"foo"}')

● Deliver columns named “key” and 
“value”



  

9.3 get keys from JSON object

● SELECT * FROM 
json_object_keys('{"a":1,"b":"foo"}')



  

9.3 JSON array processing

● SELECT json_array_length('[1,2,3,4]');
● SELECT * FROM 

json_array_elements('[1,2,3,4]')



  

9.3 API extension example

● Code can be cloned from 
https://bitbucket.org/adunstan/json_typeof

● See also jsonfuncs.c for lots of examples of 
use.

https://bitbucket.org/adunstan/json_typeof


  

What's missing in 9.3?

● Efficiency
● Richer querying
● Canonicalization
● Indexing
● Complete Utilities for building json
● CRUD operations



  

9.4 JSON features

● New json creation functions
● New utility functions
● jsonb type

– Efficient operations

– Indexable

– Canonical



  

9.4 Features – new json aggregate

● json_object_agg(“any”, “any”)
● Turn a set of key value pairs int a json object
● Select json_object_agg(name, population) 

from cities;
● { “Smallville”: 300, “Metropolis”: 1000000}



  

9.4 Features – json creation functions

● json_build_object( VARIADIC “any”)
● json_build_array(VARIADIC “any”)
● json_object(text[])
● json_object(keys text[], values text[])



  

9.4 json creation simple examples

● select json_build_object('a',1,'b',true)
● {“a”: 1, “b”: true}
● select json_build_array('a',1,'b',true)
● [“a”, 1, “b”, true]
● select json_object(array['a','b','c','d']
● Or select json_object(array[['a','b'],['c','d']]
● Or select json_object(array['a','c'],array['b','d'])
● {“a”:”b”, “c”:”d”}



  

9.4 json creation complex example

select  json_build_object(

       'a', json_build_array('b',false,'c',99),

       'd', json_build_object('e',array[9,8,7]::int[],

           'f', (select to_json(r) from ( 

                   select relkind, oid::regclass as  name 

                   from pg_class where relname = 'pg_class') r)), 

        'g', json_object(array[['w','x'],['y','z']]));

 

 {"a" : ["b", false, "c", 99], "d" : {"e" : [9,8,7], "f" : {"relkind":"r","name

":"pg_class"}}, "g" : {"w" : "x", "y" : "z"}}



  

9.4 features – json_typeof

● json_typeof(json) returns text
– Result is one of:

● 'object' 
● 'array'
● 'string' 
● 'number'
● 'boolean'
● 'null'
● Null

● Kudos: Andrew Tipton



  

9.4 features – jsonb type

● Accepts the same inputs as json
– Uses the 9.3 parsing API

– Checks Unicode escapes, especially use of 
surrogate pairs, more thoroughly than json.

● Representation closely mirrors json syntax



  

9.4 Features jsonb kudos

● Originally grew out of work on nested hstore
– Major kudos to Oleg Bartunov, Teodor 

Sigaev, Alexander Korotkov

– Adaptation of indexable operators by Peter 
Geoghegan

– Most of parser, and implementation of json 
functions and operators for jsonb by moi



  

9.4 Features – jsonb canonical 
representation

● Whitespace and punctuation dissolved away
● Only one value per object key is kept

– Last one wins.

– Key order determined by length, then 
bytewise comparison



  

9.4 Features – jsonb operators

● Has the json operators with the same 
semantics:
-> ->>  #>  #>>

● Has standard equality and inequality operators
=   <>   >   <   >=   <=

● Has new operations testing containment, 
key/element presence
@>  <@  ?  ?| ?&



  

9.4 Features – jsonb equality and 
inequality

● Comparison is piecewise
– Object > Array > Boolean > Number > String > Null

– Object with n pairs > object with n - 1 pairs

– Array with n elements > array with n - 1 elements

● Not particularly intuitive

● Not ECMA standard ordering, which is possibly not 
suitable anyway



  

9.4 features – jsonb functions
● jsonb has all the json processing functions, 

with the same semantics
– i.e. functions that take json arguments

– Function names start with jsonb_ instead of 
json_

● jsonb does not have any of the json creation 
functions

– i.e. functions that take non-json arguments 
and output json

– Workaround: cast result to jsonb



  

9.4 features – jsonb indexing
● For more details see Oleg, Teodor and 

Alexander's Vodka talk from yesterday.
● 2 ops classes for GIN indexes

– Default supports contains  and  exists 
operators:

@>   ?   ?&   ?|

– Non-default ops class jsonb_path_ops only 
supports @> operator

– Faster

– Smaller indexes



  

9.4 features –  jsonb subdocument 
indexes

● Use “get” operators to construct expression 
indexes on subdocument:

– CREATE INDEX author_index ON  books 
USING GIN ((jsondata -> 'authors'));

– SELECT * FROM books
WHERE jsondata -> 'authors' ? 'Carl 
Bernstein';



  

When to use json, when jsonb

● If you need any of these, use json
– Storage of validated json, without processing 

or indexing it

– Preservation of white space in json text

– Preservation of object key order

– Preservation  of duplicate object keys

– Maximum input/output speed

● For any other case, use jsonb



  

Future of JSON in PostgreSQL

● More indexing options
– Vodka!

– Further requirements will emerge from use

● Json alteration operations
– e.g. Set a field, or delete an element

● General document store
– Can we get around the “rewrite a whole 

datum” issue



  

Unconference issues

● Statistics?
● Planner support?
● ???



  

Questions?
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