

PostgreSQL 9.4 and JSON

Andrew Dunstan

andrew@dunslane.net
andrew.dunstan@pgexperts.com

mailto:andrew@dunslane.net
mailto:andrew.dunstan@pgexperts.com

Overview

● What is JSON? Why use JSON?
● Quick review of 9.2, 9.3 features
● 9.4 new features
● Future work

What is JSON?

● Data serialization format
– rfc 7158, previously rfc 4627

● Lightweight
● Human readable
● Becoming ubiquitous
● Simpler and more compact than XML

What it looks like

{
 "books" : [
 { "title": "Catch 22”, "author": "Joseph Heller"},
 { "title": "Catcher in the Rye", "author": "J. D. Salinger"}
],
 "publishers": [
 { "name": "Random House" },
 { "name": "Penguin" }
],
 "active": true,
 "version": 35,
 "date": "2003-09-13",
 “reference”: null
}

Scalars:
● quoted strings
● numbers
● true, false, null

No extensions

No date/time types

Why use it?

● Everyone is moving that way
● Understood everywhere there is a JavaScript

interpreter
– Especially browsers

● ... and in a large number of other languages
– e.g. Perl, Python

● node.js is becoming very widely used
● More compact than XML
● Most applications don't need the richer

structure of XML

Why not use it?

● Overly verbose
● Field names are repeated

● Arguably less readable than, say, YAML
● Not suitable for huge objects
● Not quite type rich enough

– No timestamp support

Review – pre 9.2 facilities

Nothing – store JSON as text
● No validation
● No JSON production
● No JSON extraction

Review – 9.2 data type

New JSON type
● Stored as text
● Reasonably performant state-based

validating parser
● Kudos: Robert Haas

Review – 9.2 production functions

● Turn non-JSON data into JSON
● row_to_json(anyrecord)
● array_to_json(anyarray)
● Optional second param for pretty printing

● My humble contribution ☺

What's missing?

● JSON production features are incomplete
● JSON processing is totally absent

● Have to use PLV8, PLPerl or some such

9.3 Features – JSON production

● to_json(any)
● Can be used on any datum, not just

arrays and records

● json_agg(record)
● Much faster than

array_to_json(array_agg(record))

9.3 and casts to JSON

● Production functions honor casts to JSON
for non-builtin types

● Not needed for builtins, as we know
how to convert them

● Saves syscache lookups where we
know it's not necessary

● Is this wise, or necessary?
– Counter case is ISO 8601 Timestamps
– Workaround – use to_char()

9.3 hstore and JSON

● hstore_to_json(hstore)
● Also used as a cast function

● hstore_to_json_loose(hstore)
● Uses heuristics about whether or not

certain possibly numeric and boolean
values need to be quoted.

9.3 JSON parser rewrite

● New parser uses recursive descent
pattern

● Caller can supply event handlers for
certain events

● c.f. XML SAX parsers
● Validator uses NULL handlers for all

events

● Tokenizing routines of previous parser
largely kept

9.3 JSON processing functions

● All leverage new parser API
● Operators give a more natural style to

extraction operations
● Many have two forms, producing either

JSON output, which can be further
processed, or text output, which cannot.

● Text output is de-escaped and
dequoted

9.3 extraction operators (1)

● -> fetch an array element or object
member as json

● '[4,5,6]'::json->2 ⟹ 6
– json arrays are 0 based, unlike SQL

arrays
● '{"a":1,"b":2}'::json->'b' ⟹ 2

9.3 extraction operators (2)

● ->> fetch an array element orobject
member as text

● '["a","b","c"]'::json->2 ⟹ c
– Instead of "c"

9.3 extraction operators (3)

● #> and #>> fetch data pointed at by a
path

● Path is an array of text elements
● Treats arrays correctly by some trying to

treat path element as an integer of
necessary

● '{"a":[6,7,8]}'::json#>'{a,1}' ⟹ 7
●

9.3 extraction functions

● json_extract_path(json, VARIADIC
path_elems text[]);

● json_extract_path_text(json, VARIADIC
path_elems text[]);

● Same as #> and #>> operators, but
you can pass the path as a variadic
array

● json_extract_path('{"a":[6,7,8]}','a','1')
⟹ 7

9.3 turn JSON into records

● CREATE TYPE x AS (a int, b int);
● SELECT * FROM

json_populate_record(null::x,
'{"a":1,"b":2}', false);

● SELECT * FROM
json_populate_recordset(null::x,'[{"a":1,"
b":2},{"a":3,"b":4}]', false);

9.3 turn JSON into key/value pairs

● SELECT * FROM
json_each('{"a":1,"b":"foo"}')

● SELECT * FROM
json_each_text('{"a":1,"b":"foo"}')

● Deliver columns named “key” and
“value”

9.3 get keys from JSON object

● SELECT * FROM
json_object_keys('{"a":1,"b":"foo"}')

9.3 JSON array processing

● SELECT json_array_length('[1,2,3,4]');
● SELECT * FROM

json_array_elements('[1,2,3,4]')

9.3 API extension example

● Code can be cloned from
https://bitbucket.org/adunstan/json_typeof

● See also jsonfuncs.c for lots of examples of
use.

https://bitbucket.org/adunstan/json_typeof

What's missing in 9.3?

● Efficiency
● Richer querying
● Canonicalization
● Indexing
● Complete Utilities for building json
● CRUD operations

9.4 JSON features

● New json creation functions
● New utility functions
● jsonb type

– Efficient operations

– Indexable

– Canonical

9.4 Features – new json aggregate

● json_object_agg(“any”, “any”)
● Turn a set of key value pairs int a json object
● Select json_object_agg(name, population)

from cities;
● { “Smallville”: 300, “Metropolis”: 1000000}

9.4 Features – json creation functions

● json_build_object(VARIADIC “any”)
● json_build_array(VARIADIC “any”)
● json_object(text[])
● json_object(keys text[], values text[])

9.4 json creation simple examples

● select json_build_object('a',1,'b',true)
● {“a”: 1, “b”: true}
● select json_build_array('a',1,'b',true)
● [“a”, 1, “b”, true]
● select json_object(array['a','b','c','d']
● Or select json_object(array[['a','b'],['c','d']]
● Or select json_object(array['a','c'],array['b','d'])
● {“a”:”b”, “c”:”d”}

9.4 json creation complex example

select json_build_object(

 'a', json_build_array('b',false,'c',99),

 'd', json_build_object('e',array[9,8,7]::int[],

 'f', (select to_json(r) from (

 select relkind, oid::regclass as name

 from pg_class where relname = 'pg_class') r)),

 'g', json_object(array[['w','x'],['y','z']]));

 {"a" : ["b", false, "c", 99], "d" : {"e" : [9,8,7], "f" : {"relkind":"r","name

":"pg_class"}}, "g" : {"w" : "x", "y" : "z"}}

9.4 features – json_typeof

● json_typeof(json) returns text
– Result is one of:

● 'object'
● 'array'
● 'string'
● 'number'
● 'boolean'
● 'null'
● Null

● Kudos: Andrew Tipton

9.4 features – jsonb type

● Accepts the same inputs as json
– Uses the 9.3 parsing API

– Checks Unicode escapes, especially use of
surrogate pairs, more thoroughly than json.

● Representation closely mirrors json syntax

9.4 Features jsonb kudos

● Originally grew out of work on nested hstore
– Major kudos to Oleg Bartunov, Teodor

Sigaev, Alexander Korotkov

– Adaptation of indexable operators by Peter
Geoghegan

– Most of parser, and implementation of json
functions and operators for jsonb by moi

9.4 Features – jsonb canonical
representation

● Whitespace and punctuation dissolved away
● Only one value per object key is kept

– Last one wins.

– Key order determined by length, then
bytewise comparison

9.4 Features – jsonb operators

● Has the json operators with the same
semantics:
-> ->> #> #>>

● Has standard equality and inequality operators
= <> > < >= <=

● Has new operations testing containment,
key/element presence
@> <@ ? ?| ?&

9.4 Features – jsonb equality and
inequality

● Comparison is piecewise
– Object > Array > Boolean > Number > String > Null

– Object with n pairs > object with n - 1 pairs

– Array with n elements > array with n - 1 elements

● Not particularly intuitive

● Not ECMA standard ordering, which is possibly not
suitable anyway

9.4 features – jsonb functions
● jsonb has all the json processing functions,

with the same semantics
– i.e. functions that take json arguments

– Function names start with jsonb_ instead of
json_

● jsonb does not have any of the json creation
functions

– i.e. functions that take non-json arguments
and output json

– Workaround: cast result to jsonb

9.4 features – jsonb indexing
● For more details see Oleg, Teodor and

Alexander's Vodka talk from yesterday.
● 2 ops classes for GIN indexes

– Default supports contains and exists
operators:

@> ? ?& ?|

– Non-default ops class jsonb_path_ops only
supports @> operator

– Faster

– Smaller indexes

9.4 features – jsonb subdocument
indexes

● Use “get” operators to construct expression
indexes on subdocument:

– CREATE INDEX author_index ON books
USING GIN ((jsondata -> 'authors'));

– SELECT * FROM books
WHERE jsondata -> 'authors' ? 'Carl
Bernstein';

When to use json, when jsonb

● If you need any of these, use json
– Storage of validated json, without processing

or indexing it

– Preservation of white space in json text

– Preservation of object key order

– Preservation of duplicate object keys

– Maximum input/output speed

● For any other case, use jsonb

Future of JSON in PostgreSQL

● More indexing options
– Vodka!

– Further requirements will emerge from use

● Json alteration operations
– e.g. Set a field, or delete an element

● General document store
– Can we get around the “rewrite a whole

datum” issue

Unconference issues

● Statistics?
● Planner support?
● ???

Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43

