

Why UPSERT is weird

Peter Geoghegan

PgCon 2014
Thursday, May 22

2/35

About me

● PostgreSQL major contributor
● Often work on performance stuff
● Work for Heroku – build internal infrastructure

for Postgres database-as-a-service

3/35

What is this talk about?

● INSERT or UPDATE – one or the other. Atomic.
Popularly known as “UPSERT”.

● Duplicate defined in terms of (would-be) unique
index violations

● Strategic implications
● Implementation considerations

4/35

What is this talk not about?

● Some will be aware of the fact that Heikki Linnakangas
wanted me to go a different way with the implementation

● I will refer to my own implementation, but the concerns
under discussion today are identical for both

● Heikki sketched a design with identical user-visible
semantics, which are the real story here. This wasn't
quite the case for a while.

● I believe that nothing I'll present as anything other than
an opinion is actually disputed

5/35

Satisfying everyone

● Hackers recognize that this is an important project,
but naturally strongly prefer something that
comports with existing code and conceptual
precepts

● Users want something broadly useful. There should
be minimal gotchas.

● Lots of misinformation on the internet about how to
do UPSERT manually. Very confusing.

● As an implementer, I want to keep everyone happy

UPSERT in theory

8/35

Goals for UPSERT in Postgres

● “Fundamental UPSERT property”. At READ COMMITTED isolation
level, you should always get an atomic insert or update.
– No unprincipled deadlocking

– No spurious unique constraint violations

● Although there will be a single, implicit “merge on” unique indexed
column or columns, there should be no need to explicitly specify
which unique index we mean. That would be a really ugly
requirement for a DML statement.

● Acceptable performance. Quickly burning through XIDs (from
aborting subtransactions) intractable for important multi-master
replication (BDR) insert conflict handling use-cases.

9/35

How unique indexes work in Postgres

● Within ExecInsert() executor code, we handling the insertion of
a single table slot

● A single heap tuple is physically inserted. We then have a physical
tuple identifier (TID) for it.

● Insert index tuples for each index on the table, using the heap TID.
Some may be unique indexes. In practice, only the btree AM is
cataloged as supporting them (amcanunique = 't').

● B-Tree code aborts transaction if there is a violation
● There may be other index tuples inserted when that happens.

Everything becomes bloat.
● It's the AM's problem as to how duplicates are detected

10/35

How B-Tree code handles duplicates

● With trivial exception, Postgres B-Trees don't have any visibility information (i.e. no
metadata with which to directly figure out if IndexTuple tuples are visible to a given
transaction's snapshot under MVCC rules)

● MVCC rules aren't quite what we care about here anyway; our snapshot may not yet
see a would-be duplicate, for example, but of course we still have to worry about them

● Code uses a DirtySnapshot (not our existing MVCC snapshot from executor state).
These are used in just a few places in Postgres. Allows code to consider effects of
current transaction, and in-progress transactions.

● In essence, code looks for conclusively-visible duplicate. May have to wait indefinitely
pending outcome of other transaction (if it INSERTs, UPDATEs, or DELETEs would-be
duplicate of interest).

● If there is conclusively such a duplicate after that wait, raises
ERRCODE_UNIQUE_VIOLATION. Otherwise, proceeds with physical insertion of
IndexTuple.

11/35

B-Tree structure

● We use buffer locks (which serve as page locks) to protect the physical structure of
the B-Tree. Preserves invariants. This would probably be equally necessary within a
filesystem that happens to use B-Trees (e.g. btrfs).

● We share lock the root page, inner pages and one or more leaf pages as part of an
index scan. Usually only need to lock one at a time during tree descent for insert.

● Unique indexes kind of work by treating uniqueness as a part of the B-Tree structure
that must similarly be protected as an invariant.

● Of course, it's a lot messier than that. We often have multiple versions of tuples in the
same B-Tree, corresponding to each heap version, and they don't duplicate each
other according to the semantics we find useful here, even though they're duplicates
in the strict physical sense (i.e. a simple index ScanKey would indicate they're equal).

● Since we have to go to the heap (table) for visibility information to sort the mess out,
we have to exclusive lock the buffer/page that is the first leaf page a would-be
duplicate could be on.

12/35

B-Tree structure (cont. 1)

● We search the heap for duplicates on the first leaf page (and maybe
subsequent leaf pages) with that original exclusive lock on the first
leaf page held throughout.

● Exclusive buffer lock needed because we cannot reasonably later
escalate from shared, and we usually need to actually perform an
insertion into the leaf page without releasing that lock. Someone else
might “get in ahead of us” if we released a shared to get an exclusive.
They might then insert the integer value 5 when that was what we'd
intended to insert, even though we've already concluded that it's okay
to proceed. Index becomes corrupt.

● We must, in a limited sense, lock, say, the integer 5 – a value - in the
abstract. We cannot lock some existing object, because there is none.
That's the whole point.

13/35

B-Tree structure (cont. 2)

● You might say that through this buffer locking mechanism,
Postgres already has a very limited form of value locking,
which is sometimes known as range locking in 2PL
systems that need it for all kinds of things. Some systems'
SERIALIZABLE isolation levels depend on this, and even
depend on appropriate indexes being available.

● Yes, with Postgres inserting a row will block would-be
duplicate inserts, but the row lock here is still quite distinct
from a value lock. For users of other systems, this salient
distinction will seem natural. For Postgres hackers,
perhaps less so.

14/35

B-Tree value locking

● We can't hold that exclusive buffer lock all day long, or even for more than an instant.
● So when we see that there is an inconclusively-committed conflict tuple, but need to

wait pending the end of some other transaction, we release the exclusive lock,
having obtained an XID to wait on from the heap (table) while page was exclusive
locked.

● Sleep, and when woken by other transaction's commit/abort, start from scratch (just
for that unique index). Repeat until a conclusive yes/no is obtained. When we
physically insert into the index, it may then become some other session's problem to
worry about that value and our transaction.

● So today we kind of link the low-level, high performance buffer locks to longer term
lock-manager managed XID locks, without row locking style lock arbitration.

● By which I mean: The first session to wait on other transaction may not be the first to
get a second try.

● Works fine for unique index enforcement, but that's about it

15/35

A naive approach to UPSERT

● Tie Index value locking to conventional row locking
● Don't insert heap tuple first; go and “value lock” all unique

indexes
● If there is consensus to proceed, only then insert heap tuple,

and lastly insert index tuple(s), finally releasing value locks
● Otherwise, go lock/update row (I lock the conflict row in my

patch, but that really isn't too distinct from actually updating it
for our purposes). Then release the value locks when you're
done.

● Since an escalation from value locking to row locking occurs,
that must mean everything works out...right?

UPSERT in practice

17/35

Problems with overlapping “value” and
row locks

● If user locks two things at once, and is not careful about the ordering, there may be
deadlocks. Value locks (of whatever form) are one thing, and row locks are another thing.

● Tends to consistently deadlock in a way that isn't defensible to Postgres users
● We still have to worry about regular inserters, and they too are only going to be prevented

from finishing insertion in respect of conflicting table slot (i.e. ExecInsert() call only
blocks when we finally go to insert into indexes).

● Determining if predicates are compatible ahead of time, which is what it would take to
make this actually work (short of a full table ExclusiveLock), is known to be NP-hard.
No actual implementation can do this.

Conclusion: You cannot tie value locking to row locking (i.e. have
the two overlap when upserting a slot, managing upserters in a
strict queue) if you want to consistently avoid throwing some error

18/35

Other systems, SQL MERGE

Long-standing SQL Server MERGE issues - from SQL Server Tips, “Use caution with SQL Server's MERGE Statement”:
http://www.mssqltips.com/sqlservertip/3074/use-caution-with-sql-servers-merge-statement

19/35

Issues with other implementations

● Duplicate key violation errors
● Blog author shows that SQL Server doesn't hold initial

“intent update page” lock, and “update key” lock when it
goes to do insert.

● One workaround is to use a hint that makes those locks
last until end of transaction (or use 2PL-style
SERIALIZABLE isolation level).

● Why don't they just do this all the time, given these locks
are granular? Presumably has something to do with the
deadlock implications, and/or performance.

http://weblogs.sqlteam.com/dang/archive/2009/01/31/UPSERT-Race-Condition-With-MERGE.aspx

20/35

What my proposed patch does

● Escalates buffer locks held as part of regular unique index
enforcement to heavyweight page locks

● Reaches consensus across unique indexes if possible
● Staggers what is essentially the traditional unique index

enforcement behavior across all unique indexes in attempt to
reach consensus

● If not, goes to lock duplicate row opportunistically
● Original heavyweight page locks dropped
● So somewhat like SQL Server, except...
● ...theoretical lock starvation hazards exist, because we loop

21/35

Row locking and value locking
conclusions

● It's kind of confusing that heap rows can kind of work like value
locks just by having values (if and only if there is already a physical
index tuple). I hope that the salient distinction is not lost on
anybody.

● You can't reasonably tie the two, or expect to escalate from one to
the other (i.e. hold value locks at the same time). Doing so doesn't
help, and causes unprincipled deadlocks. This view seems to have
won acceptance on -hackers.

● You can grab value locks and proceed with insertion proper if there
is consensus to proceed. Otherwise, release value locks and go
lock conflicting row.

● Value locks are only useful for when you actually insert. That's it.

An aside on the proposed syntax

23/35

It looks something like this:

WITH rej AS
(
 INSERT INTO test(a, b)
 VALUES(123, 'Ottawa'),
 (456, 'Vancouver')
 ON DUPLICATE KEY LOCK FOR UPDATE
 RETURNING REJECTS a, b
)
UPDATE test SET test.b = rej.b FROM rej
WHERE test.a = rej.a;

● MERGE-like, but in some ways more flexible (in
others, perhaps less).

● Like MERGE, this may DELETE rather than UPDATE
● Unlike MERGE, we can detect where conflicts occur

Visibility and the logically still-in-
progress conflict TID problem

25/35

“But let's back up and talk about MVCC for a minute. Suppose we have three
source tuples, (1), (2), and (3); and the target table contains tuples (1) and (2),
of which only (1) is visible to our MVCC snapshot; suppose also an equijoin.
Clearly, source tuple (1) should fire the MATCHED rule and source tuple (3)
should fire the NOT MATCHED rule, but what in the world should source tuple
(2) do? AFAICS, the only sensible behavior is to throw a serialization error,
because no matter what you do the results won't be equivalent to a serial
execution of the transaction that committed target tuple (2) and the transaction
that contains the MERGE.

Even with predicate locks, it's not obvious how to me how to solve this
problem. Target tuple (2) may already be there, and its transaction already
committed, by the time the MERGE statement gets around to looking at the
source data.”

- Robert Haas (2010 SQL MERGE discussion)

http://www.postgresql.org/message-id/AANLkTineR-rDFWENeddLg=GrkT+epMHk2j9X0YqpiTY8@mail.gmail.com

Problem Statement

26/35

Failures

● I think it is unacceptable to have READ COMMITTED
isolation level throw serialization errors

● When upserting using the proposed syntax, clearly if a
conclusively-committed conflict tuple is not visible to our
snapshot, because its originating command logically
“occurred later”, there isn't much point in locking it. Our
snapshot cannot see it “yet” (i.e. only a new snapshot
will).

● We ought to have the subsequent (say) UPDATE
succeed.

27/35

EvalPlanQual()

● Postgres has always allowed READ COMMITTED level
UPDATE (and DELETE) statements to “reach into the
future” (rather than have a serialization failure) when
another open/concurrently committed transaction modified
the tuple to be updated or deleted.

● This is the EvalPlanQual() mechanism. Predicate re-
evaluated. Query “re-run” for each modified tuple.

● UPDATEs may in effect “reach into the future”.

● This is rather odd, and certainly complicated, but ultimately
the reason this happens is: Do you have a better idea?

28/35

Simple READ COMMITTED UPDATE

postgres=# explain analyze update orders set netamount = netamount + 1 where orderid = 5;
 QUERY PLAN
--
 Update on orders (cost=0.29..8.31 rows=1 width=66) (actual time=0.768..0.768 rows=0 loops=1)
 -> Index Scan using orders_pkey on orders (cost=0.29..8.31 rows=1 width=66) (actual time=0.067..0.089 rows=1 loops=1)
 Index Cond: (orderid = 5)
 Planning time: 0.557 ms
 Execution time: 0.848 ms
(5 rows)

● An Index Scan node feeds an ModifyTable/Update node here.

● Ultimately, ExecUpdate() is called by the ModifyTable node.

● That's where the EvalPlanQual() magic may occur, where we “reach into the
future” using a DirtySnapshot, etc.

● There is nothing special about the Index Scan node, though. It's using an ordinary
MVCC snapshot.

● While we can “reach into the future”, we still need to grab something in the present to
get there. We can walk the update chain to re-evaluate, but we need to see some
row version, fed to us by the Index Scan node, in order to even try to update
anything in the first place.

See postgresql/src/backend/executor/README for description of EvalPlanQual()

29/35

What this means for UPSERT

● The EvalPlanQual() mechanism is a complex means of avoiding having to throw a
serialization failure, and to do something reasonably non-surprising instead. It has been
called “an MVCC violation”.

● A new “MVCC violation” may be called for. Altering the semantics of MVCC snapshots,
again for the sole benefit of READ COMMITTED solves the problem.

● The idea here is that if you lock a tuple “in the future”, and therefore not visible under
conventional MVCC rules, that row version becomes visible to you simply by virtue of having
been locked by you (unless and until you UPDATE it, in which case only that new version is
visible).

● So we'll “look into the future” to find a duplicate in the first place (much like the present
unique index enforcement mechanism, with a DirtySnapshot), with a new novel behavior
that has us “look into the future” on a limited basis a second time using an ordinary MVCC
snapshot.

● This really has nothing in particular to do with the proposed syntax. If there was the full
MERGE syntax, and you passed a TID around internally, that would be 100% equivalent, at
least morally.

Pick any two

31/35

“It is possible for concurrent MERGE statements to cause duplicate INSERT violations
because of a race condition between when we check whether the row is matching/not
matching and when we apply the appropriate WHEN clause, if any. This is just the
same as what we do now with try-UPDATE-then-INSERT logic.”

- Simon Riggs (2008 SQL MERGE discussion)

http://stackoverflow.com/questions/21904005/oracle-merge-constraint-violation-on-unique-key

● This is only true of current ad-hoc approaches if you don't
loop – the PL/PgSQL example in the docs does, though (as
does the proposed patch)

● Both SQL Server and Oracle SQL MERGE implementations
seem to exhibit this behavior, even for trivial UPSERTs that
don't JOIN tables (with only inline using()...ON()
values, all distinct).

http://www.postgresql.org/message-id/1208372338.4259.202.camel@ebony.site

More on Spurious duplicate violations

32/35

Concurrency-safe UPSERT in Oracle

http://stackoverflow.com/a/22777749

33/35

The trade-off

● Pick any two (for READ COMMITTED):

– 1) No deadlocking

– 2) No unique constraint violations

– 3) No lock starvation hazards

● Postgres users seem to already like having 1) and 2), and seem fine
with the theoretical risk of 3).

● SERIALIZABLE isolation level can serve use cases that won't tolerate
this, though

● Maybe you actually can “square the circle” and get all 3 with full
predicate locking, or a full table lock, since either is a logical choke-
point, but both of those alternatives are clearly nonstarters, mentioned
here only for completeness

34/35

Summary

● Implementation involves intersection of some rather complex
parts of the system

● Solutions proposed are pragmatic trade-offs
● Implementation is better in every way than the work-around that

the documentation recommends, which is to perform ad-hoc
looping with an inner subtransaction to manually implement
UPSERT. Similar semantics, though.

● There are only weak lock arbitration rules. However, this doesn't
seem to matter in practice, if the lack of actual complaints
around our looping UPSERT example is anything to go on.

● Yes, I'm making a plausibility argument.

Thanks for listening!

Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35

