

Corruption Detection and
Containment

Jeff Davis
pgsql@j-davis.com

Survey

ERROR: invalid page header in
 block 123 of relation "foo"

Survey

● Who has seen this error?
● In production?
● Did it result in permanent data loss?
● Did you have a backup/replica?
● Was the same block bad on the

backup/replica?

Who Should We Blame?

● Hardware
● Firmware
● Filesystem
● PostgreSQL
● Backup/replication policy
● ?

Who Should We Blame?

● Hardware
● Firmware
● Filesystem
● PostgreSQL
● Backup/replication policy
● ?
● (The real answer is “all of the above”, but

we'll focus on these two.)

Digression: Filesystems

● In some ways, it makes sense to detect
the problem in the filesystem, so that
postgres and the backups don't have to
worry so much

● One problem, however, is: which
filesystem?

● For linux, only Btrfs and ZFS support
checksums

Digression: Filesystems

● Neither filesystem has widespread use on
linux.

● Both are “copy-on-write” style, meaning
that every change to a block on disk
writes a whole new block in a new
location.

– There are technical reasons why copy-on-
write and checksums go together.

Digression: Filesystems

● But copy-on-write filesystems may not be
good for database systems.

● One drawback is that you lose locality
between block N and N+1, which can
make sequential access into random
access.

● So these filesystems might not be a
suitable design for many workloads,
even after they are stable and optimized

Goals

● Reliably detect corruption as early as
possible

● Avoid propagating corruption
(containment)

● Have a recovery plan

Goals

● All the goals are related
● If you can't detect the corruption, it will

almost certainly be propagated to
backups

● If you propagate corruption to backups, it
compromises your recovery plan

Detection

● Page header check
● Checksums in 9.3
● pg_filedump

Detection

● Checksums in 9.3 are a big improvement
over the page header check

● initdb … ­­data­checksums
● More reliable
● Detects transposed pages
● Detects corruption in the middle of a page

Detection

● pg_filedump … | grep Error

is a reasonable offline check for data files
● http://pgfoundry.org/projects/pgfiledump/
● A little better than the page header check

http://pgfoundry.org/projects/pgfiledump/

Containment

● If corruption makes it into the executor,
that causes wrong results or a
mysterious crash

● If corruption makes it to the
backup/replica, that eliminates recovery
options

Containment

● Did you know that a base backup makes
no effort to detect corruption?

● Yet we rely on it, not just for backups, but
also for replication.

● Many backup/replication policies are quite
likely to propagate corruption, and
unlikely to offer corruption protection.

● Wait a second... backups don't protect
you!?

Containment

● You really need to validate your backups.
● pg_filedump can help with this

Containment

● Streaming replication is actually quite
good at avoiding the propagation of
corruption, because WAL records have a
CRC.

● The problem is when you have to re-sync
by taking a new base backup.

● Also, you might have independent
corruption on the replica that goes
unnoticed.

Recovery

● Failover to good replica
● Restore from backup
● ?

Recovery

● Not much more to say here.
● If you detect corruption early enough, and

prevent it from propagating, you'll be
able to recover.

● Otherwise, you probably have permanent
data loss.

● Perhaps with sufficient creativity, you may
be able to avoid complete disaster.

Summary of the Current Situation

● Live in fear
● Use checksums in 9.3
● Make streaming replication a centerpiece

of your durability strategy
● Avoid relying on frequent base backups
● Always do some verification of the base

backup (pg_filedump helps here) before
overwriting any previous backup

Improvements Roadmap

● http://wiki.postgresql.org/wiki/

Corruption_Detection_and_Containment

http://wiki.postgresql.org/wiki/

Improvements Roadmap:
Detection

● Detect zeroed pages as corruption
– Right now, zero pages are always treated

as valid

● Detect corruption in SLRU/clog
● Temporary files (e.g. for Sort)

Improvements Roadmap:
Detection

● Distinguish between WAL corruption and
end-of-WAL correctly

– Right now, a bad CRC in a WAL record
during recovery is treated as end-of-WAL

● Provide a way to enable/disable
checksums

Improvements Roadmap:
Containment

● Base backup should fail if corruption is
detected

● More complete offline checker
● Background checker

Conclusion

● A lot to worry about
● Significant improvements being made,

starting in 9.3
● Remember:

– Streaming replication

– checksums

– pg_filedump

– Be careful relying on unverified base
backups

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

