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Survey

ERROR:  invalid page header in 
  block 123 of relation "foo"



  

Survey

● Who has seen this error?
● In production?
● Did it result in permanent data loss?
● Did you have a backup/replica?
● Was the same block bad on the 

backup/replica?



  

Who Should We Blame?

● Hardware
● Firmware
● Filesystem
● PostgreSQL
● Backup/replication policy
● ?



  

Who Should We Blame?

● Hardware
● Firmware
● Filesystem
● PostgreSQL
● Backup/replication policy
● ?
● (The real answer is “all of the above”, but 

we'll focus on these two.)



  

Digression: Filesystems

● In some ways, it makes sense to detect 
the problem in the filesystem, so that 
postgres and the backups don't have to 
worry so much

● One problem, however, is: which 
filesystem?

● For linux, only Btrfs and ZFS support 
checksums



  

Digression: Filesystems

● Neither filesystem has widespread use on 
linux.

● Both are “copy-on-write” style, meaning 
that every change to a block on disk 
writes a whole new block in a new 
location.

– There are technical reasons why copy-on-
write and checksums go together.



  

Digression: Filesystems

● But copy-on-write filesystems may not be 
good for database systems.

● One drawback is that you lose locality 
between block N and N+1, which can 
make sequential access into random 
access.

● So these filesystems might not be a 
suitable design for many workloads, 
even after they are stable and optimized



  

Goals

● Reliably detect corruption as early as 
possible

● Avoid propagating corruption 
(containment)

● Have a recovery plan



  

Goals

● All the goals are related
● If you can't detect the corruption, it will 

almost certainly be propagated to 
backups

● If you propagate corruption to backups, it 
compromises your recovery plan



  

Detection

● Page header check
● Checksums in 9.3
● pg_filedump



  

Detection

● Checksums in 9.3 are a big improvement 
over the page header check

● initdb … ­­data­checksums
● More reliable
● Detects transposed pages
● Detects corruption in the middle of a page



  

Detection

● pg_filedump … | grep Error

is a reasonable offline check for data files
● http://pgfoundry.org/projects/pgfiledump/
● A little better than the page header check

http://pgfoundry.org/projects/pgfiledump/


  

Containment

● If corruption makes it into the executor, 
that causes wrong results or a 
mysterious crash

● If corruption makes it to the 
backup/replica, that eliminates recovery 
options



  

Containment

● Did you know that a base backup makes 
no effort to detect corruption?

● Yet we rely on it, not just for backups, but 
also for replication.

● Many backup/replication policies are quite 
likely to propagate corruption, and 
unlikely to offer corruption protection.

● Wait a second... backups don't protect 
you!?



  

Containment

● You really need to validate your backups.
● pg_filedump can help with this



  

Containment

● Streaming replication is actually quite 
good at avoiding the propagation of 
corruption, because WAL records have a 
CRC.

● The problem is when you have to re-sync 
by taking a new base backup.

● Also, you might have independent 
corruption on the replica that goes 
unnoticed.



  

Recovery

● Failover to good replica
● Restore from backup
● ?



  

Recovery

● Not much more to say here.
● If you detect corruption early enough, and 

prevent it from propagating, you'll be 
able to recover.

● Otherwise, you probably have permanent 
data loss.

● Perhaps with sufficient creativity, you may 
be able to avoid complete disaster.



  

Summary of the Current Situation

● Live in fear
● Use checksums in 9.3
● Make streaming replication a centerpiece 

of your durability strategy
● Avoid relying on frequent base backups
● Always do some verification of the base 

backup (pg_filedump helps here) before 
overwriting any previous backup



  

Improvements Roadmap

● http://wiki.postgresql.org/wiki/

Corruption_Detection_and_Containment

http://wiki.postgresql.org/wiki/


  

Improvements Roadmap:
Detection

● Detect zeroed pages as corruption
– Right now, zero pages are always treated 

as valid

● Detect corruption in SLRU/clog
● Temporary files (e.g. for Sort)



  

Improvements Roadmap:
Detection

● Distinguish between WAL corruption and 
end-of-WAL correctly

– Right now, a bad CRC in a WAL record 
during recovery is treated as end-of-WAL 

● Provide a way to enable/disable 
checksums



  

Improvements Roadmap:
Containment

● Base backup should fail if corruption is 
detected

● More complete offline checker
● Background checker



  

Conclusion

● A lot to worry about
● Significant improvements being made, 

starting in 9.3
● Remember:

– Streaming replication

– checksums

– pg_filedump

– Be careful relying on unverified base 
backups
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