
WAL Internals Of
PostgreSQL

Contents

REDO Definition

Redo Implementation in PostgreSQL

Key Structures Used in PostgreSQL

Advantages & Disadvantages of PostgreSQL Implementation

Redo Implementation in Oracle

Advantages & Disadvantages of Oracle Implementation

Improvements in PostgreSQL

Detailed method for one of the improvements

REDO Definition

• Redo logs contain a history of all changes made to the database.

• Redo log files are used by

– Recovery

– Incremental Backup and Point In Time Recovery

– Replication

• Every change made to the database is written to the redo log file
before it is written to the data file.

• The redo log buffer is flushed to the redo log file when a COMMIT
is issued.

• A background log writer process to flush Redo in case if the
database setting is such that Redo should be flushed in a batch.

• Redo is not required for temporary tables.

REDO Definition

Redo Implementation in PostgreSQL

Key Structures Used in PostgreSQL

Advantages & Disadvantages of PostgreSQL Implementation

Redo Implementation in Oracle

Advantages & Disadvantages of Oracle Implementation

Improvements in PostgreSQL

Detailed method for one of the improvements

Jargons

• WAL – Write Ahead Log. It is used in context of transaction log files.

• Xlog - Transaction log. It is used in context of transaction log
buffers.

• LSN – Log sequence number. It is used to mark position of log in
pages.

• Bgwriter – Background writer.This is used to flush shared buffers
and perform checkpoint.

• Clog - Commit log. It is used in context of transaction status buffers.

• Partial Page Write – This happens when OS is able to write partial
page in disk files which can cause corruption.

Redo Implementation in PostgreSQL

• In PostgreSQL, Redo logs are known by Write Ahead Logs (WAL)
and it is ensured that log entries must reach stable storage before
the data-page changes they describe.

• To guarantee above,
- Each data page (either heap or index) is marked with the

LSN (log sequence number --- in practice, a WAL file location) of
the latest XLOG record affecting the page.

- Before the bufmgr can write out a dirty page, it must ensure
that xlog has been flushed to disk at least up to the page's LSN.

• This low-level interaction improves performance by not waiting for
WAL I/O until necessary.

• Temporary table operations doesn’t get logged.

Redo Record Data

Header Info : crc,
RM_HEAP_ID, Xid,len,
XLOG_HEAP_INSERT

Data : tupleid, infobits,
c0: 'AUS'
c1: 100
c2: 4

Header Info : crc,
RM_HEAP_ID, Xid,len,
XLOG_HEAP_UPDATE

Data : oldtupid, newtupid,
infobits,
c0: 'AUS'
c1: 104
c2: 4

Header Info : crc,
RM_HEAP_ID, Xid,len,
XLOG_HEAP_DELETE

Data : tupleid

INSERT INTO score

(team, runs, wickets)

VALUES

('AUS',100,4);

INSERT

UPDATE score

SET

runs = 104,

wickets = 5

WHERE team = 'AUS';

UPDATE

DELETE FROM score

WHERE team = 'AUS';

DELETE

Algorithm For WAL Action

• Pin and take Exclusive-lock on buffer containing the data page to be
modified

• Start the critical section which ensures that any error occur till End of
critical section should be a PANIC as buffers might contain
unlogged changes.

• Apply changes to buffer.

• Mark the buffer as dirty which ensures bgwriter (checkpoint) will
flush this page and marking buffer dirty before writing log record
ensures less contention for content latch of buffer.

• Build a record to be inserted in transaction log buffer.

• Update the Page with LSN which will be used by bgwriter or flush
operation of page to ensure that corresponding log is flushed from
buffer.

• End Critical section.

• Unlock and unpin the buffer.

Important Locks Used In WAL

• WALInsertLock

• This lock is used to insert transaction log record contents into
transaction log memory buffer. First this lock is taken then whole
contents including full buffers (if full_page_writes is on) are copied
into log buffers.

• Other places where this lock is used
- During flush of log buffers to check if there are any more
additions to log buffer since last it is decided till log buffer flush
point.
- To determine the Checkpoint redo location
- During Online backup to enforce Full page writes till the

backup is finished.
- to get the current WAL insert location from built in function.

Important Locks Used In WAL

• WALWriteLock
• This lock is used to write transaction log buffer data to WAL file.

After taking this lock all the transaction log buffer data upto pre-
decided point will get flushed.

• Places where it get used are
- Flush of transaction log which can be due to Commit, Flush
of data buffers, truncate of commit log etc.

- During Switch of Xlog.
- During get of new Xlog buffer, if all buffers are already
occupied and not flushed.

- Get the time of the last xlog segment switch

Write Ahead Log Files

• The transaction log files are stored in $PGDATA/pg_xlog
directory. They are named as 000000020000070A0000008E.

- The first 8 digits identifies the timeline,
- The following 8 digits identifies the (logical) xlog file and
- The last ones represents the (physical) xlog file (Segement)

• The physical files in pg_xlog directory are not actually the xlog
files;

PostgreSQL calls it segments.

• Each Segment contains Bocks of 8K and Segment size is 16M.

Block 0
1. Seg Hdr
2. Block Header
3. WAL Records
Each WAL record
has header.

WAL 1, 2 ,3

Block 1
1. Block Header
2. WAL Records
3. Each WAL record
has header.

WAL 4,5

Block 2
1. Block Header
2. WAL Records
3. Each WAL record
has header.

WAL 5,6,7,8

… Block 255

1. Block Header
2. WAL Records
3. Each WAL record
has header.

WAL m,n,…

Switch Transaction Log Segment

• What is XLOG SWITCH?

It means to change the current xlog segment file to next
segment file.

• What all needs XLOG SWITCH?

• At Archive timeout, so that current files can be archived.

• At Shutdown, so that current files can be archived.

• At start of online backup

• By built-in function pg_switch_xlog

Async Commit

• In this mode, the WAL data gets flushed to disk after predefined
time by a background WAL writer process.

• Commit only updates the WAL record pointer upto which
background process needs to flush.

• In worst-case three walwriter cycles will be required to flush the
WAL buffered data.

• We must not set a transaction-committed hint bit on a relation page
and have that record make it to disk prior to the WAL record of the
commit. This can maintain transaction status consistency across
crash recovery.

Protection against partial writes in disk

• Data Page Partial Write Protection

• To protect the data page partial write, the first WAL record
affecting a given page after a checkpoint is made to contain a copy
of the entire page, and we implement replay by restoring that page
copy instead of redoing the update.

• WAL Page Partial Write Protection

• Each WAL record contains CRC and checking the validity of the
WAL record's CRC will detect partial write.

• Each WAL page contains a magic number, the validity of which is
checked after reading each page.

REDO Definition

Redo Implementation in PostgreSQL

Key Structures Used in PostgreSQL

Advantages & Disadvantages of PostgreSQL Implementation

Redo Implementation in Oracle

Advantages & Disadvantages of Oracle Implementation

Improvements in PostgreSQL

Detailed method for one of the improvements

• Fixed size log record header which sits in the beginning of each log
record.

• Stores the information of current transaction id.

• Stores CRC to validate the log record.

• Stores total length of record

• Info bits to indicate whether backup block information is present.

• Resource manager id to indicate type of resource of log record

XLogRecord

XLogRecData

• The resource manager data is defined by a chain of one or more
XLogRecData structs.

• - Multiple structs are used when backup pages needs to be
written

• when the buffer is backed up, it does not insert the data pointed to
by this XLogRecData struct into the XLOG record

• Flag to indicate whether free space of backup page can be omitted.

• Actual data of record

• Buffer associated with data

BkpBlock

• Header information for backup block. This is appended to Xlog
Record.

• Stores information about hole inside backup page

• Stores information for relation containing block

• Follows it is the actual backup page data

REDO Definition

Redo Implementation in PostgreSQL

Key Structures Used in PostgreSQL

Advantages & Disadvantages of PostgreSQL Implementation

Redo Implementation in Oracle

Advantages & Disadvantages of Oracle Implementation

Improvements in PostgreSQL

Detailed method for one of the improvements

Advantages/Disadvantages Of PG Implementation

• Advantages

1. One of the Advanced features of PostgreSQL is it its ability to perform

transactional DDL’s via its Write Ahead Log design.

2. Removing holes of data page and then write to WAL will have less I/O if

pages are not full.

3. WAL data written for Insert and Delete operation is lesser than systems

having UNDO (Oracle).

4. During ASync Commit, writing data only in blocks ensures less usage of

I/O bandwidth.

5. Keeping Log Sequence Number on each page ensures that during dirty

page flush Buffer Manager doesnot need to wait for Flush of WAL until

necessary.

Advantages/Disadvantages Of PG Implementation

• Disadvantages

1. Flushing data pages during Commit can be heavier.

2. Update operation writes whole row in WAL even if 1 or 2

columns are modified. This can lead to increase in overall

WAL traffic.

3. During Async Commit, each time to check tuple visibility it

needs to refer CLOG Buffer/File which is costly.

4. Calculating CRC for each WAL can be costly especially in

case during full data page writes.

REDO Definition

Redo Implementation in PostgreSQL

Key Structures Used in PostgreSQL

Advantages & Disadvantages of PostgreSQL Implementation

Redo Implementation in Oracle

Advantages & Disadvantages of Oracle Implementation

Improvements in PostgreSQL

Detailed method for one of the improvements

Redo Log Files
• Redo log uses operating system block size

– usually 512 bytes

– format dependent on

• operating system

• Oracle version

• Each redo log consists of

– header

– redo records

• Redo log is written sequentially

Block 0 Block 1 Block 2

Redo

Record

1

File

Header

Redo

Header

Block 3

Redo

Records

2 & 3

Block 4

Redo

Records

3 & 4

Block M

Redo

Record

N

...

Redo Records

• A redo record consists of

– redo record header

– one or more change vectors

• Each redo record contains undo and redo for an atomic change

• Some changes do not require undo

Redo

Record

Header

Change

#1

Change

#2

Change

#3

Change

#N
.....

Redo Record Header

• Every redo record has a header

REDO RECORD - Thread:1 RBA: 0x003666.000000cf.0010 LEN: 0x019c VLD: 0x01
SCN: 0x0000.00eb1279 SUBSCN: 1 05/08/2003 15:44:12

• Fields include

Thread Thread Number

RBA Redo Byte Address

LEN Length of record in
bytes

SCN System Change
Number

Date and Time of
Change

Redo Byte Address (RBA)

• Every redo record has a Redo Byte Address (RBA) e.g.

RBA: 0x003666.000000cf.0010

• RBA is 10 bytes in length

• RBA identifies start of redo record

• Fields are

– Log sequence number (0x3666)

– Block number within redo log (0xcf)

– Byte number within block (0x10)

Change Vector

• Describes a change to a single data block

• Can apply to

– undo headers

– undo blocks

– data segment headers

– data blocks

• Is created in PGA before the data block buffer is modified

• Consists of

– header

– array of change record lengths

– array of change records

Change Vector

• For example

10

20

48

2

2

29

28

16

Change Record 1

Change Record 2

Change Record 3

Change Record 4

Change Record 5

Change Record 6

Change Record 7

Length Vector

Change Header

Change Vector Header

• Every change vector has a header e.g.

CHANGE #2 TYP:0 CLS: 1 AFN:5 DBA:0x0144d023 SCN:0x0000.0ac67cce
SEQ: 4 OP:11.5

• Fields include

CHANGE Change number

TYP Change type

CLS Class

AFN Absolute File Number

DBA Relative Database Block
Address

SCN System Change Number

SEQ Sequence Number (relative to
SCN)

OP Operation Code

UPDATE t1
SET c2 = 101
WHERE c1 = 1;

UPDATE t1
SET c2 = 201
WHERE c1 = 2;

COMMIT;

Transactions

Statements Undo Header

Undo Block

Data Block

SLOT C1 C2

0 1 100

1 2 200

SLOT

0

Undo
Slot 0 c2 = 100

Undo
Slot 1 c2 = 200

STATUS

101

10

201

9

Redo Logs

Undo Header 5.2

Undo
Slot 0 c2 = 100

5.1

Redo
Slot 0 c2 = 101

11.5

Undo
Slot 1 c2 = 200

5.1

Redo
Slot 1 c2 = 201

11.5

Commit 5.4

Redo Record Data
• For data blocks

OP 5.1 (11.1)

Delete Row Piece - DRP

Slot 4:

OP 11.2

Insert Row Piece - IRP

Slot 4:

c0: 'AUS'

c1: 100

c2: 4

OP 5.1 (11.1)

Update Row Piece - URP

Slot 4:

c1: 100

c2: 4

OP 11.5

Update Row Piece - URP

Slot 4:

c1: 104

c2: 5

OP 5.1 (11.1)

Insert Row Piece - IRP

Slot 4:

c0: 'AUS'

c1: 104

c2: 5

OP 11.3

Delete Row Piece - DRP

Slot 4:

INSERT INTO score

(team, runs, wickets)

VALUES

('AUS',100,4);

INSERT

UPDATE score

SET

runs = 104,

wickets = 5

WHERE team = 'AUS';

UPDATE

DELETE FROM score

WHERE team = 'AUS';

DELETE

Undo

Redo

STOP

Global Temporary Tables

RedoStatements

COMMIT 5.4

REDO #3

UNDO #3

11.2

5.1

UNDO #2

REDO #2

5.1

11.2

UNDO #1

HEADER

REDO #1 11.2

5.1

5.2

COMMIT;

-- Statement #1

INSERT INTO t1 VALUES (1);

-- Statement #2

INSERT INTO t1 VALUES (2);

-- Statement #3

INSERT INTO t1 VALUES (3);

Protection against partial writes in disk

• Redo Page Partial Write Protection

• We can configure Oracle to use checksums to verify blocks in the
redo log files.

• If block checking is enabled, Oracle computes a checksum for
each redo log block written to the current log.

• Oracle writes the checksum in the header of the block. Oracle uses
the checksum to detect corruption in a redo log block.

LGWR Process

• The log writer process writes one contiguous portion of the buffer

to disk. LGWR write:

– A commit record when a user process commits a transaction

– Redo log buffers

• Every three seconds

• When the redo log buffer is one-third full

• When a DBWn process writes modified buffers to disk, if

necessary.

LGWR Process

• In times of high activity, LGWR can write to the redo log file using

group commits.

• For example, when LGWR is writing T-1 Commit operation redo

entries to disk, other users issue COMMIT statements.

• After the first transaction's entries are written to the redo log file,

the entire list of redo entries of waiting transactions (not yet

committed) can be written to disk in one operation, requiring less I/O

than do transaction entries handled individually.

• During flush of Redo log buffer if redo log buffer is partially filled then

the empty space will be wasted in Redo Log File.

REDO Definition

Redo Implementation in PostgreSQL

Key Structures Used in PostgreSQL

Advantages & Disadvantages of PostgreSQL Implementation

Redo Implementation in Oracle

Advantages & Disadvantages of Oracle Implementation

Improvements in PostgreSQL

Detailed method for one of the improvements

Advantages/Disadvantages Of Oracle
Implementation

• Advantages

1. Update has less redo as it writes only changed data.

2. Group commits by LGWR can reduce the overall I/O and improve

performance.

3. Writing in block sizes same as hardware/OS block size gives

benefit.

4. Log writer flushes redo if redo log buffer is 1/3rd full which will

make sure there can never be contention for Redo Log Buffer.

Advantages/Disadvantages Of Oracle
Implementation

• Disadvantages

1. There can be lot of space wastage in Redo log

files during high activity in database.

2. Redo of Insert and Delete SQL statements will be

more as compare to PostgreSQL because it has to write

Redo for Undo data generated as well.

3. Headers size is more compare to PostgreSQL. It

can have multiple headers for one Redo Record. 1st for each

Redo Record then for each Change Vector.

REDO Definition

Redo Implementation in PostgreSQL

Key Structures Used in PostgreSQL

Advantages & Disadvantages of PostgreSQL Implementation

Redo Implementation in Oracle

Advantages & Disadvantages of Oracle Implementation

Improvements in PostgreSQL

Detailed method for one of the improvements

Improvements in PostgreSQL

1. For Update operation the amount of WAL required can be reduced
by writing only changed column values and reconstruct full row
during recovery.

2. Flushing Data page contents during Commit by main user process
is costly, other databases does it in background process.

3. We can introduce a concept similar to Group Commits by WAL
writer which can improve performance during high volume of
transactions.

4. Improve the Tuple visibility logic for setting the transaction status in
a tuple during Asynchronous Commits.

5. To improve the writing of same Redo Block again and again if the
transaction data is small.

REDO Definition

Redo Implementation in PostgreSQL

Key Structures Used in PostgreSQL

Advantages & Disadvantages of PostgreSQL Implementation

Redo Implementation in Oracle

Advantages & Disadvantages of Oracle Implementation

Improvements in PostgreSQL

Detailed method for one of the improvements

Need for WAL reduction for Update
• In most telecom scenario’s, the Update operation updates few

columns out of all used in schema

• For example

CREATE TABLE callinfo (logtime date not null, updatetime date,
callerno varchar2(20), agentid varchar2(10), status int, i0
int, c0 varchar2(20), i1 int, c1 varchar2(20), i2 int,

c2 varchar2(20), i3 int,c3 varchar2(20),i4 int,c4 varchar2(20),

i5 int,c5 varchar2(20),i6 int,c6 varchar2(20),i7 int,

c7 varchar2(20), i8 int,c8 varchar2(20),i9 int,

c9 varchar2(20),content varchar2(512));

update callinfo set status = status + 1, i0 = i0 + 1 where callerno =
:callerno

Method-1 to reduce WAL for Update op

• Only send the changed data to WAL and reconstruct tuple during
recovery.

• Reconstruction would need the old tuple data and the new tuple
changed data to reconstruct the row at time of recovery.

• After the row is generated it will be inserted in data page.

• It is better to do apply this method when old and new tuple are on
same page, otherwise it need to do I/O during recovery.

• The changed columns are logged in a byte-by-byte instruction set
format using tuple descriptor.

Method-1 Contd..

• Byte-byByte format is used instead of attributes and number of
attribute as we don’t tuple descriptor during recovery.

• The diff instructions allow us to express operations very simply.

For Example,

CREATE TABLE foo (col1 integer, col2 integer, col3 varchar(50),
col4 varchar(50));

INSERT INTO foo values (1, 1, repeat('abc',15), repeat(‘def’,15));

Method-1 Contd..

UPDATE foo SET col2 = 100 WHERE col1 = 1;

will generate diff instructions (assuming 4 byte alignment for now)

COPY 4 (bytes from old to new tuple)

IGNORE 4 (bytes on old tuple)

ADD 4 (bytes from new tuple)

COPY 90 (bytes from old to new tuple)

Method-1 Contd..

• With a terse instruction set the diff format can encode the diff
instructions in a small number of bytes, considerably reducing the
WAL volume.

• The simplicity of the diff algorithm is important because this
introduces

- additional CPU and

- potentially contention also, since the diff is calculated while the
block is locked.

• As a result, it is proposed that the diff would only be calculated
when the new tuple length is in excess of a hard-coded limit

Method-2 to reduce WAL for Update op

• This method of reducing WAL will be applied only if table has fixed
length columns(int,char,float).

• Keep only changed data and offset of it in WAL.

• Reconstruction would need the old tuple data and the new tuple
changed data to reconstruct the row at time of recovery.

• After the row is generated it will be inserted in data page.

• It is better to do apply this method when old and new tuple are on
same page, otherwise it need to do I/O during recovery.

Method-2 Contd..

• log the offset, length, value format for changed data to reconstruct
the row during recovery.

• During recovery with this information the new row can be
constructed without even tuple descriptor.

• As the log format is only for fixed length columns, so during recovery

it can be directly applied at mentioned locations to generate a new
tuple.

• This method can also be optimized such that it will log in described
format if all changed columns are before any variable data type
column.

Method-2 Contd..

• For Example

CREATE TABLE foo (col1 integer, col2 integer, col3 varchar(50),
col4 varchar(50));

INSERT INTO foo values (1, 1, repeat('abc',15), repeat(‘def’,15));

UPDATE foo SET col2 = 100 WHERE col1 = 1;

• will generate log without considering tuple header

old tuple location

Offset: 5, length: 4 value: 100

• offset and length can be stored in 2-3 bytes considering this will be
applied tuples of length less than 2000 bytes.

Comparison for method-1 & method-2

• Method-1 is valid irrespective of data type of columns, whereas
Method-2 is applied only in certain cases depending on datatype.

• In case of Method-2, contention chances will be less as the
information required for logging should be available during tuple
formation.

• Generation of new tuple during recovery can be faster in Method-2
as it needs to make a copy of original tuple and then replace new
values at specified location.

Thank You

