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» High Concurrency
» Index-Only Scans
» Parameterized Plans
» Indexing

» Sorting

» Power Consumption

» Miscellaneous
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pebench -5, =scale factor 188, nedian of 3
nax_connections = 188, shared_buffersz = 8GB
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5=pinute runs, 32=-core AHD Opteron 6128



» Added a “fast path” to lock manager to allow “weak” relation
locks to bypass the main lock manager in most cases.

» Extended the “fast path” to allow “virtual transaction ID locks” to
bypass the main lock manager.

» Wait-free test for new shared invalidation messages.
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pebench =5, PG 9,.2devel as of conmnit d5381cA3
8 ® S=core AHD 6272 Processors
nedian of 3 9=-ninute runs, nax_connections = 188, shared_buffers = 8GB
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» Moved “hot” members of PGPROC data structure to a separate
array to minimize cache line passing.

Improved WAL-writer responsiveness to reduce CLOG traffc.
Increased number of CLOG buffers.

Fixed SLRU buffer replacement algorithm.

Eliminated some redundant CLOG lookups during index scans.
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Improved “piggybacking” of WAL f ush, resulting in better “group
commit” behavior.

» Reduce volume of WAL generated by COPY.
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pgbench, scale factor 188, nedian of 3 38-ninute runs, 32-core AHD Opteron G128
nax_connections = 108, shared_bufferz = BGB
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pgbench =5, PG 9.2devel as of comnit 194bSea3
2 % 8-core 3,995 GHz POMERY Processors, 4 hardware threads/core
pgbench-tools, insert,sql, median of 3 1-ninute runs
mai_connections = 1808, shared_buffersz = BGB
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» Visibility map stores 1 bit per heap (table) page, which may be
set only if every tuple on the page is visible to all current (and
future) transactions. One visibility map page (8kB) covers
~512MB of heap.

» If all necessary data is available from index tuple, probe visibility
map rather than loading heap page; if page is all-visible, skip
heap fetch; otherwise, fetch heap page normally.

» Visibility map has existed since 8.4 as a hint for VACUUM; was
not crash-safe before 9.2.
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» MacBook Pro, 4GB, shared_buffers=400MB
» pgbench -i -s 1000

» pgbench-n-S-T300-c8-8
* SELECT abalance FROM pgbench_accounts WHERE aid
= :aid

* Primary key lookup via pgbench_accounts_pkey

» create index pgbench_accounts_covering on pgbench_accounts
(aid, abalance);

» pgbench_accounts is 13GB; each index is 2142MB
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» Default Conf guration:
tps = 63.288028 (including connections establishing)

» With Covering Index:
pgbench -n-S-T 300-c 8- 8
tps = 302.459713 (including connections establishing)
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» Same MacBook Pro, same pgbench -i -s 1000

» select * from generate_series(1, 10) g left join
(pgbench_accounts a join pgbhench_accounts b on a.aid = b.aid)
on g * 10000000 = a.aid;

» Times on 9.1: 246963.437 ms, 250191.531 ms, 251019.811 ms

» Times on 9.2devel: 579.341 ms, 1.398 ms, 1.211 ms

Enterprisepp°

The Enterprise PostgreSQL Company



Merge Right Join
(cost=59.83..10472347.77 rows=1000 width=198)

Merge Cond: (a.aid = ((g.g * 10000000)))

-> Merge Join
(cost=0.00..9972270.44 rows=100000000 width=194)

Merge Cond: (a.aid = b.aid)

-> |ndex Scan using pgbench_accounts_pkey
on pgbench_accounts a
(cost=0.00..4236135.22 rows=100000000 width=97)

-> |ndex Scan using pgbench_accounts_pkey
on pgbench_accounts b
(cost=0.00..4236135.22 rows=100000000 width=97)

-> Sort (cost=59.83..62.33 rows=1000 width=4)
Sort Key: ((g.g * 10000000))

-> Function Scan on generate_series g
(cost=0.00..10.00 rows=1000 width=4)
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Nested Loop Left Join
(cost=0.01..235886.80 rows=1000 width=198)

-> Function Scan on generate_series g
(cost=0.00..10.00 rows=1000 width=4)

-> Nested Loop
(cost=0.00..235.86 rows=1 width=194)

-> |ndex Scan using pgbench_accounts_covering
on pgbench_accounts a
(cost=0.00..117.94 rows=1 width=97)

Index Cond: ((g.g * 10000000) = aid)

-> |ndex Scan using pgbench_accounts_covering
on pgbench_accounts b
(cost=0.00..117.91 rows=1 width=97)

Index Cond: (aid = a.aid)
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» indexedcol op ANY(ARRAY]I...]) in plain indexscans

» Better selectivity estimation for array operators

<@, &&, @>

» Improvements to GiST indexing: indexes build more quickly, and
are of better quality

» New index type: SP-GIST
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» “Sort support” infrastructure reduces argument packing and
unpacking.

» Specialized versions of gsort are more eff cient than a general
gsort.
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» In PostgreSQL 9.1, there are approximately 11.5 auxilliary
process wake-ups per second.

» In PostgreSQL 9.2betal, as of 2012-05-18, there are
approximately 0.4 auxiliary process wakeups per second (on a
system that's been idle for a few minutes).

» For hosting providers with many virtualized, lightly-used copies
of PostgreSQL, fewer wake-ups translates into real cost
savings.
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» Plan cache reduces the danger of getting a “bad” query plan
when using prepared queries (however, more work is probably
still needed).

» User-space Access Vector Cache for sepgsql.

» Faster array assignment in PL/pgsql due to caching of type
information.

» Improved spinlock implementation on HP Itanium.
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» Plain old pgbench is helpful. Write runs need to be at least 30
minutes long, 5 minutes is enough for reads. Repeat each test
3x to identify outliers.

» TPS is constant for read-only tests, but varies widely for write
tests. pgbench -l output allows construction of tps-vs-time
graph; but overhead is a problem.

» LWLOCK_ STATS are very helpful. Adding instrumentation to
count number of “spins” required to acquire the lwlock's spinlock
IS even better.
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» CPU prof ling via gprof or oprof le is almost useless, because
the overhead is too high. perf record has acceptable overhead,
but not too useful for scalability because LWLock contention
deschedules the process.

» Context switch prof ling (perf record -e cs -g) is useful for
identifying which call paths are causing LWLock-related context
switches.

» Custom instrumentation is awesome.
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» Benchmarking extreme workloads (like pgbench) exacerbates
bottlenecks, making it easier to judge the effectiveness of
solutions.

» Many (but not all) problems are easy to f x once you understand
what's really happening. But that can take months.

» Measuring system performance along multiple axes (tps,
latency, frequency of lock contention, duration of lock stalls)
reveals different problems.

» LWLocks are poorly suited to many synchronization problems,
but it's not exactly clear what would be better.
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» Buffer replacement is mostly single-threaded.

» WAL insertion is single-threaded. Particularly nasty just after a
checkpoint!

» fsync on a busy system can take many seconds to complete —
can cause nasty CLOG stalls, and slowness around
checkpoints.

» The more other things we f x, the worse ProcArrayLock looks:
snapshot acquisition vs. transaction commit.
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» Any Questions?

®
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