Enterprise)

The Enterprise PostgreSQL Company

Performance and Scalability Enhancements
In PostgreSQL 9.2

Robert Haas
Senior Database Architect

www.enterprisedb.com

» High Concurrency
» Index-Only Scans
» Parameterized Plans
» Indexing

» Sorting

» Power Consumption

» Miscellaneous

EnterprisenRB°

The Enterprise PostgreSQL Company

pebench -5, =scale factor 188, nedian of 3
nax_connections = 188, shared_buffersz = 8GB

2250008

2868088

175880

1586888

1258808

TF5

14008688

Faaeaa

58884

25880

1 T T T T T T T T T T T T T T T T T T T

| - PG 9.2 Current 4+ - I A S T

PG 9.2 Fast Locks —¥— '

L PG 9.1 —%¥— :

N A __________ A S S A A S S S beeaadn
; i i i i i i i i i i i i i i i i i i i

Clients

Enterprise|

The Enterprise PostgreSQL Company

5=pinute runs, 32=-core AHD Opteron 6128

» Added a “fast path” to lock manager to allow “weak” relation
locks to bypass the main lock manager in most cases.

» Extended the “fast path” to allow “virtual transaction ID locks” to
bypass the main lock manager.

» Wait-free test for new shared invalidation messages.

EnterpriseppB’

The Enterprise PostgreSQL Company

pebench =5, PG 9,.2devel as of conmnit d5381cA3
8 ® S=core AHD 6272 Processors
nedian of 3 9=-ninute runs, nax_connections = 188, shared_buffers = 8GB

375000 JPG“.;WE,..;_._ ----- SEE SR S S S S (S s SE S S

350888

e e

325888

Jaa8aa

27580008

258808

2258848

2008848

TF5

175888

1568888

125808

188808

o688

a5
25888

12 4 8 12 16 28 24 28 32 36 48 44 48 52 56 68 64 68 72 76 88
§ Clients

Enterprisep)

The Enterprise PostgreSQL Company

» Moved “hot” members of PGPROC data structure to a separate
array to minimize cache line passing.

Improved WAL-writer responsiveness to reduce CLOG traffc.
Increased number of CLOG buffers.

Fixed SLRU buffer replacement algorithm.

Eliminated some redundant CLOG lookups during index scans.

vvyywyy

v

Improved “piggybacking” of WAL f ush, resulting in better “group
commit” behavior.

» Reduce volume of WAL generated by COPY.

Enterprisepp

The Enterprise PostgreSQL Company

pgbench, scale factor 188, nedian of 3 38-ninute runs, 32-core AHD Opteron G128
nax_connections = 108, shared_bufferz = BGB

T T T T T T T T
14paa PG 9.2 Current —— e s e s [-

PG 9.1 —¥—

12000 [SR e AR I R S S S
10800 [------oooobeeennnhgf AT

gooe | s {7 A e . R _—

TF5

i ' ' i ' i i '
EHHB T T S S —3
i ' ' i ' i i '

ABBB [
2000 [e oo s R e e =
i i i i i i i i
8 16 24 32 48 48 56 64
Clients

Enterprise

The Enterprise PostgreSQL Company

pgbench =5, PG 9.2devel as of comnit 194bSea3
2 % 8-core 3,995 GHz POMERY Processors, 4 hardware threads/core
pgbench-tools, insert,sql, median of 3 1-ninute runs
mai_connections = 1808, shared_buffersz = BGB

130088 _h’E 9.2 Current —— ... I I I -

SR FG 9,1 —+— J . : :
reo00 | R TN e o

oo | TN -
wo| N -
| SN -
| N -

ovn e e e D o

TFPS

BRBA [
. : : : : :
5088 oo f P G RS e b
. : : : : :
4088 Foooif o P P PREREEE: P RREREEEEE P ERREPED P R P PR P L PP PEPPERRE foone

L : : : : :

S I IR e e oo

2008 [/ L o RERERREREEEE R R o

toon P — — — i e

$ Clients

Enterprise|

The Enterprise PostgreSQL Company

» Visibility map stores 1 bit per heap (table) page, which may be
set only if every tuple on the page is visible to all current (and
future) transactions. One visibility map page (8kB) covers
~512MB of heap.

» If all necessary data is available from index tuple, probe visibility
map rather than loading heap page; if page is all-visible, skip
heap fetch; otherwise, fetch heap page normally.

» Visibility map has existed since 8.4 as a hint for VACUUM; was
not crash-safe before 9.2.

Enterprisepp

The Enterprise PostgreSQL Company

» MacBook Pro, 4GB, shared_buffers=400MB
» pgbench -i -s 1000

» pgbench-n-S-T300-c8-8
* SELECT abalance FROM pgbench_accounts WHERE aid
= :aid

* Primary key lookup via pgbench_accounts_pkey

» create index pgbench_accounts_covering on pgbench_accounts
(aid, abalance);

» pgbench_accounts is 13GB; each index is 2142MB

EnterpriseppB°

The Enterprise PostgreSQL Company

» Default Conf guration:
tps = 63.288028 (including connections establishing)

» With Covering Index:
pgbench -n-S-T 300-c 8- 8
tps = 302.459713 (including connections establishing)

Enterprise

The Enterprise PostgreSQL Company

» Same MacBook Pro, same pgbench -i -s 1000

» select * from generate_series(1, 10) g left join
(pgbench_accounts a join pgbhench_accounts b on a.aid = b.aid)
on g * 10000000 = a.aid;

» Times on 9.1: 246963.437 ms, 250191.531 ms, 251019.811 ms

» Times on 9.2devel: 579.341 ms, 1.398 ms, 1.211 ms

Enterprisepp°

The Enterprise PostgreSQL Company

Merge Right Join
(cost=59.83..10472347.77 rows=1000 width=198)

Merge Cond: (a.aid = ((g.g * 10000000)))

-> Merge Join
(cost=0.00..9972270.44 rows=100000000 width=194)

Merge Cond: (a.aid = b.aid)

-> |ndex Scan using pgbench_accounts_pkey
on pgbench_accounts a
(cost=0.00..4236135.22 rows=100000000 width=97)

-> |ndex Scan using pgbench_accounts_pkey
on pgbench_accounts b
(cost=0.00..4236135.22 rows=100000000 width=97)

-> Sort (cost=59.83..62.33 rows=1000 width=4)
Sort Key: ((g.g * 10000000))

-> Function Scan on generate_series g
(cost=0.00..10.00 rows=1000 width=4)

Enterprisepp°

The Enterprise PostgreSQL Company

Nested Loop Left Join
(cost=0.01..235886.80 rows=1000 width=198)

-> Function Scan on generate_series g
(cost=0.00..10.00 rows=1000 width=4)

-> Nested Loop
(cost=0.00..235.86 rows=1 width=194)

-> |ndex Scan using pgbench_accounts_covering
on pgbench_accounts a
(cost=0.00..117.94 rows=1 width=97)

Index Cond: ((g.g * 10000000) = aid)

-> |ndex Scan using pgbench_accounts_covering
on pgbench_accounts b
(cost=0.00..117.91 rows=1 width=97)

Index Cond: (aid = a.aid)

Enterprisepp°

The Enterprise PostgreSQL Company

» indexedcol op ANY(ARRAY]I...]) in plain indexscans

» Better selectivity estimation for array operators

<@, &&, @>

» Improvements to GiST indexing: indexes build more quickly, and
are of better quality

» New index type: SP-GIST

EnterprisepR’

The Enterprise PostgreSQL Company

» “Sort support” infrastructure reduces argument packing and
unpacking.

» Specialized versions of gsort are more eff cient than a general
gsort.

®

Enterprise

The Enterprise PostgreSQL Company

» In PostgreSQL 9.1, there are approximately 11.5 auxilliary
process wake-ups per second.

» In PostgreSQL 9.2betal, as of 2012-05-18, there are
approximately 0.4 auxiliary process wakeups per second (on a
system that's been idle for a few minutes).

» For hosting providers with many virtualized, lightly-used copies
of PostgreSQL, fewer wake-ups translates into real cost
savings.

Enterprisepp°

The Enterprise PostgreSQL Company

» Plan cache reduces the danger of getting a “bad” query plan
when using prepared queries (however, more work is probably
still needed).

» User-space Access Vector Cache for sepgsql.

» Faster array assignment in PL/pgsql due to caching of type
information.

» Improved spinlock implementation on HP Itanium.

EnterprisenpR’

The Enterprise PostgreSQL Company

» Plain old pgbench is helpful. Write runs need to be at least 30
minutes long, 5 minutes is enough for reads. Repeat each test
3x to identify outliers.

» TPS is constant for read-only tests, but varies widely for write
tests. pgbench -l output allows construction of tps-vs-time
graph; but overhead is a problem.

» LWLOCK_ STATS are very helpful. Adding instrumentation to
count number of “spins” required to acquire the lwlock's spinlock
IS even better.

EnterpriseppB°

The Enterprise PostgreSQL Company

» Plain old pgbench is helpful. Write runs need to be at least 30
minutes long, 5 minutes is enough for reads. Repeat each test
3x to identify outliers.

» TPS is constant for read-only tests, but varies widely for write
tests. pgbench -l output allows construction of tps-vs-time
graph; but overhead is a problem.

» LWLOCK_ STATS are very helpful. Adding instrumentation to
count number of “spins” required to acquire the lwlock's spinlock
IS even better.

EnterpriseppB°

The Enterprise PostgreSQL Company

» CPU prof ling via gprof or oprof le is almost useless, because
the overhead is too high. perf record has acceptable overhead,
but not too useful for scalability because LWLock contention
deschedules the process.

» Context switch prof ling (perf record -e cs -g) is useful for
identifying which call paths are causing LWLock-related context
switches.

» Custom instrumentation is awesome.

EnterpriseppB°

The Enterprise PostgreSQL Company

» Benchmarking extreme workloads (like pgbench) exacerbates
bottlenecks, making it easier to judge the effectiveness of
solutions.

» Many (but not all) problems are easy to f x once you understand
what's really happening. But that can take months.

» Measuring system performance along multiple axes (tps,
latency, frequency of lock contention, duration of lock stalls)
reveals different problems.

» LWLocks are poorly suited to many synchronization problems,
but it's not exactly clear what would be better.

Enterprisepp

The Enterprise PostgreSQL Company

» Buffer replacement is mostly single-threaded.

» WAL insertion is single-threaded. Particularly nasty just after a
checkpoint!

» fsync on a busy system can take many seconds to complete —
can cause nasty CLOG stalls, and slowness around
checkpoints.

» The more other things we f x, the worse ProcArrayLock looks:
snapshot acquisition vs. transaction commit.

EnterprisenpR’

The Enterprise PostgreSQL Company

» Any Questions?

®

Enterprise

The Enterprise PostgreSQL Company

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

