
Click to edit Master subtitle style

1

Performance and Scalability Enhancements
in PostgreSQL 9.2

Robert Haas
Senior Database Architect

Areas of Improvement

2

u High Concurrency

u Index-Only Scans

u Parameterized Plans

u Indexing

u Sorting

u Power Consumption

u Miscellaneous

Read Scalability (as of September 2011)

3

High Read Concurrency

4

u Added a “fast path” to lock manager to allow “weak” relation
locks to bypass the main lock manager in most cases.

u Extended the “fast path” to allow “virtual transaction ID locks” to
bypass the main lock manager.

u Wait-free test for new shared invalidation messages.

Did I Say 32 Cores? (April 2012)

5

High Write Concurrency

6

u Moved “hot” members of PGPROC data structure to a separate
array to minimize cache line passing.

u Improved WAL-writer responsiveness to reduce CLOG traffi c.
u Increased number of CLOG buffers.
u Fixed SLRU buffer replacement algorithm.
u Eliminated some redundant CLOG lookups during index scans.

u Improved “piggybacking” of WAL fl ush, resulting in better “group
commit” behavior.

u Reduce volume of WAL generated by COPY.

Write Scalability (as of February 2012)

7

Commit Scalability (as of March 2012)

8

Index-Only Scans: Architecture

9

u Visibility map stores 1 bit per heap (table) page, which may be
set only if every tuple on the page is visible to all current (and
future) transactions. One visibility map page (8kB) covers
~512MB of heap.

u If all necessary data is available from index tuple, probe visibility
map rather than loading heap page; if page is all-visible, skip
heap fetch; otherwise, fetch heap page normally.

u Visibility map has existed since 8.4 as a hint for VACUUM; was
not crash-safe before 9.2.

Index-Only Scans: Example

10

u MacBook Pro, 4GB, shared_buffers=400MB

u pgbench -i -s 1000

u pgbench -n -S -T 300 -c 8 -j 8
● SELECT abalance FROM pgbench_accounts WHERE aid

= :aid

● Primary key lookup via pgbench_accounts_pkey

u create index pgbench_accounts_covering on pgbench_accounts
(aid, abalance);

u pgbench_accounts is 13GB; each index is 2142MB

Index-Only Scans: Test Results

11

u Default Confi guration:
tps = 63.288028 (including connections establishing)

u With Covering Index:
pgbench -n -S -T 300 -c 8 -j 8
tps = 302.459713 (including connections establishing)

Parameterized Plans: Example

12

u Same MacBook Pro, same pgbench -i -s 1000

u select * from generate_series(1, 10) g left join
(pgbench_accounts a join pgbench_accounts b on a.aid = b.aid)
on g * 10000000 = a.aid;

u Times on 9.1: 246963.437 ms, 250191.531 ms, 251019.811 ms

u Times on 9.2devel: 579.341 ms, 1.398 ms, 1.211 ms

Plan with No Parameterization: 9.1

13

Merge Right Join
(cost=59.83..10472347.77 rows=1000 width=198)
 Merge Cond: (a.aid = ((g.g * 10000000)))

 -> Merge Join
(cost=0.00..9972270.44 rows=100000000 width=194)

 Merge Cond: (a.aid = b.aid)

 -> Index Scan using pgbench_accounts_pkey
on pgbench_accounts a
(cost=0.00..4236135.22 rows=100000000 width=97)

 -> Index Scan using pgbench_accounts_pkey
on pgbench_accounts b
(cost=0.00..4236135.22 rows=100000000 width=97)

 -> Sort (cost=59.83..62.33 rows=1000 width=4)

 Sort Key: ((g.g * 10000000))

 -> Function Scan on generate_series g
(cost=0.00..10.00 rows=1000 width=4)

Plan with Parameterization: 9.2devel

14

Nested Loop Left Join
(cost=0.01..235886.80 rows=1000 width=198)
 -> Function Scan on generate_series g

(cost=0.00..10.00 rows=1000 width=4)

 -> Nested Loop
(cost=0.00..235.86 rows=1 width=194)

 -> Index Scan using pgbench_accounts_covering
on pgbench_accounts a
(cost=0.00..117.94 rows=1 width=97)

 Index Cond: ((g.g * 10000000) = aid)
 -> Index Scan using pgbench_accounts_covering

on pgbench_accounts b
(cost=0.00..117.91 rows=1 width=97)

 Index Cond: (aid = a.aid)

Indexing

15

u indexedcol op ANY(ARRAY[...]) in plain indexscans

u Better selectivity estimation for array operators
<@, &&, @>

u Improvements to GiST indexing: indexes build more quickly, and
are of better quality

u New index type: SP-GIST

Sorting

16

u “Sort support” infrastructure reduces argument packing and
unpacking.

u Specialized versions of qsort are more effi cient than a general
qsort.

Reduced Power Consumption

17

u In PostgreSQL 9.1, there are approximately 11.5 auxilliary
process wake-ups per second.

u In PostgreSQL 9.2beta1, as of 2012-05-18, there are
approximately 0.4 auxiliary process wakeups per second (on a
system that's been idle for a few minutes).

u For hosting providers with many virtualized, lightly-used copies
of PostgreSQL, fewer wake-ups translates into real cost
savings.

Other Improvements

18

u Plan cache reduces the danger of getting a “bad” query plan
when using prepared queries (however, more work is probably
still needed).

u User-space Access Vector Cache for sepgsql.

u Faster array assignment in PL/pgsql due to caching of type
information.

u Improved spinlock implementation on HP Itanium.

Lessons Learned

19

u Plain old pgbench is helpful. Write runs need to be at least 30
minutes long, 5 minutes is enough for reads. Repeat each test
3x to identify outliers.

u TPS is constant for read-only tests, but varies widely for write
tests. pgbench -l output allows construction of tps-vs-time
graph; but overhead is a problem.

u LWLOCK_STATS are very helpful. Adding instrumentation to
count number of “spins” required to acquire the lwlock's spinlock
is even better.

Lessons Learned (1 of 3)

20

u Plain old pgbench is helpful. Write runs need to be at least 30
minutes long, 5 minutes is enough for reads. Repeat each test
3x to identify outliers.

u TPS is constant for read-only tests, but varies widely for write
tests. pgbench -l output allows construction of tps-vs-time
graph; but overhead is a problem.

u LWLOCK_STATS are very helpful. Adding instrumentation to
count number of “spins” required to acquire the lwlock's spinlock
is even better.

Lessons Learned (2 of 3)

21

u CPU profi ling via gprof or oprofi le is almost useless, because
the overhead is too high. perf record has acceptable overhead,
but not too useful for scalability because LWLock contention
deschedules the process.

u Context switch profi ling (perf record -e cs -g) is useful for
identifying which call paths are causing LWLock-related context
switches.

u Custom instrumentation is awesome.

Lessons Learned (3 of 3)

22

u Benchmarking extreme workloads (like pgbench) exacerbates
bottlenecks, making it easier to judge the effectiveness of
solutions.

u Many (but not all) problems are easy to fi x once you understand
what's really happening. But that can take months.

u Measuring system performance along multiple axes (tps,
latency, frequency of lock contention, duration of lock stalls)
reveals different problems.

u LWLocks are poorly suited to many synchronization problems,
but it's not exactly clear what would be better.

What's Next?

23

u Buffer replacement is mostly single-threaded.

u WAL insertion is single-threaded. Particularly nasty just after a
checkpoint!

u fsync on a busy system can take many seconds to complete –
can cause nasty CLOG stalls, and slowness around
checkpoints.

u The more other things we fi x, the worse ProcArrayLock looks:
snapshot acquisition vs. transaction commit.

Thank You!

24

u Any Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

