In and Out of the PostgreSQL Shared Buffer

Cache

Greg Smith
2ndQuadrant US

05/21/2010

2ndQuadrant +

uuuuuuuuu | PostgresQL

Greg Smith In and Out of the PostgreSQL Shared Buffer Cache

About this presentation

» The master source for these slides is

http://projects.2ndquadrant.com

» You can also find a machine-usable version of the source code
to the later internals sample queries there

2ndQuadrant

Professional PostgresSQL

Greg Smith In and Out of the PostgreSQL Shared Buffer Cache

http://projects.2ndquadrant.com

Database organization

Databases are mainly a series of tables
Each table gets a subdirectory

In that directory are a number of files

vV v v Yy

A single files holds up to 1GB of data (staying well below the
32-bit 2GB size limit)

The file is treated as a series of 8K blocks

v

2ndQuadrant +

uuuuuuuuu | PostgresQL

Greg Smith In and Out of the PostgreSQL Shared Buffer Cache

Buffer cache organization

» shared_buffers sets the size of the cache (internally, NBuffers)
» The buffer cache is a simple array of that size

» Each cache entry points to an 8KB block (sometimes called a
page) of data

» In many scanning cases the cache is as a circular buffer; when
all buffers are used, scanning the buffer cache start over at 0

» Initially all the buffers in the cache are marked as free

2ndQuadrant +

uuuuuuuuu | PostgresQL

Greg Smith In and Out of the PostgreSQL Shared Buffer Cache

Entries in the cache

» Each buffer entry has a tag

» The tag says what file (and therefore table) this entry is
buffering and which block of that file it contains

» A series of flags show what state this block of data is in

» Pinned buffers are locked by a process and can't be used for
anything else until that's done.

» Dirty buffers have been modified since they were read from
disk

» The usage count estimates how popular this page has been
recently

» Good read cache statistics available in views like
pg_statio_user_tables
2ndQuadrant +

uuuuuuuuu | PostgresQL

Greg Smith In and Out of the PostgreSQL Shared Buffer Cache

Buffer Allocation

» When a process wants to access a block, it requests a buffer
allocation for it

» If the block is already cached, its returned with increased
usage count

» Otherwise, a new buffer must be found to hold this data

» If there are no buffers free (there usually aren’t) a buffer is
evicted to make space for the new one

» If that page is dirty, it is written out to disk, and the backend
waits for that write

» The block on disk is read into the page in memory

» The usage count of an allocated buffer starts at 1

2ndQuadrant +

uuuuuuuuu | PostgresQL

Greg Smith In and Out of the PostgreSQL Shared Buffer Cache

Eviction with usage counts

» The usage count is used to sort popular pages that should be
kept in memory from ones that are safer to evict

» Buffers are scanned sequentially, decreasing their usage counts
the whole time

» Any page that has a non-zero usage count is safe from eviction

» The maximum usage count any buffer can get is set by
BM_MAX_USAGE_COUNT, currently fixed at 5

» This means that a popular page that has reached
usage_count=>5 will survive 5 passes over the entire buffer
cache before it's possible to evict it.

2ndQuadrant +

uuuuuuuuu | PostgresQL

Greg Smith In and Out of the PostgreSQL Shared Buffer Cache

Interaction with the Operating System cache

» PostgreSQL is designed to rely heavily on the operating
system cache

» The shared buffer cache is really duplicating what the
operating system is already doing: caching popular file blocks

» Exactly the same blocks can be cached by both the buffer
cache and the OS page cache

» It's a bad idea to give PostgreSQL too much memory

» But you don't want to give it too little. The OS is probably
using a LRU scheme, not a database optimized clock-sweep

v

You can spy on the OS cache using pg_fincore

2ndQuadrant +

uuuuuuuuu | PostgresQL

Greg Smith In and Out of the PostgreSQL Shared Buffer Cache

Looking inside the buffer cache: pg_buffercache

» You can take a look into the shared_buffer cache using the
pg_buffercache module
» 8.3 and later versions includes the usage_count information

cd contrib/pg buffercache
make
make install

psql -d database -f pg buffercache.sql

2ndQuadrant +

uuuuuuuuu | PostgresQL

Greg Smith In and Out of the PostgreSQL Shared Buffer Cache

Limitations of pg_buffercache

» Module is installed into one database, can only decode table
names in that database

» Viewing the data takes many locks inside the database, very
disruptive

» When you'd most like to collect this information is also the
worst time to do this expensive query

» Frequent snapshots will impact system load, might collect
occasionallly via cron or pgagent, .

» Cache the information if making more than one pass over it

2ndQuadrant +

uuuuuuuuu | PostgresQL

Greg Smith In and Out of the PostgreSQL Shared Buffer Cache

Simple pg_buffercache queries: Top 10

SELECT c.relname,count(*) AS buffers

FROM pg_class c INNER JOIN pg_buffercache b

ON b.relfilenode=c.relfilenode INNER JOIN pg_database d
ON (b.reldatabase=d.oid AND d.datname=current_database())
GROUP BY c.relname

ORDER BY 2 DESC LIMIT 10;

» Join against pg_class to decode the file this buffer is caching
» Top 10 tables in the cache and how much memory they have

» Remember: we only have the information to decode tables in
the current database anQuadrant +

uuuuuuuuu | PostgresQL

Greg Smith In and Out of the PostgreSQL Shared Buffer Cache

Buffer contents summary

relname |buffered| buffers % | % of rel
accounts | 306 MB | 65.3 | 24.7
accounts_pkey | 160 MB | 34.1 | 93.2

usagecount | count | isdirty

g > W N =, O

12423 | £
31318 | £
7936 | £
4113 | £
2333 | £

£

1877 | 2ndQuadrant +*

uuuuuuuuu | PostgresQL

Greg Smith In and Out of the PostgreSQL Shared Buffer Cache

General shared_buffers sizing rules

» Anecdotal tests suggest 15% to 40% of total RAM works well
» Start at 25% and tune from there

» Systems doing heavy amounts of write activity can discover

checkpoints are a serious problem

Checkpoint spikes can last several seconds and essentially
freeze the system.

The potential size of these spikes go up as the memory in
shared_buffers increases.

There is a good solution for this in 8.3 called
checkpoint_completion_target, but in 8.2 and before it's hard
to work around.

» Only memory in shared_buffers participates in the checkpoint
» Reduce that and rely on the OS disk cache instead, the

checkpoint spikes will reduce as well. 2ndQuadrant +*

uuuuuuuuu | PostgresQL

Greg Smith In and Out of the PostgreSQL Shared Buffer Cache

Monitoring buffer activity with pg_stat_bgwriter

select * from pg_stat_bgwriter - added in 8.3
» Statistics about things moving in and out of the buffer cache

» Need to save multiple snapshots with a timestamp on each to
be really useful

» buffer_alloc is the total number of calls to allocate a new
buffer for a page (whether or not it was already cached)

» Comparing checkpoints_timed and checkpoints_req shows
whether you've set checkpoint_segments usefully

2ndQuadrant +

uuuuuuuuu | PostgresQL

Greg Smith In and Out of the PostgreSQL Shared Buffer Cache

Three ways for a buffer to be written

» buffers_checkpoint: checkpoint reconciliation wrote the buffer

» buffers_backend: client backend had to write to satisfy an
allocation

» buffers_clean: background writer cleaned a dirty buffer
expecting an allocation

» maxwritten_clean: The background writer isn't being allowed
to work hard enough

2ndQuadrant +

uuuuuuuuu | PostgresQL

Greg Smith In and Out of the PostgreSQL Shared Buffer Cache

Derived statistics

» Timed checkpoint %

» % of buffers written by checkpoints, background writer
cleaner, backends

» If you have two snapshots with a time delta, can compute
figures in real-world units

» Average minutes between checkpoints
» Average amount written per checkpoint

» Buffer allocations per second * buffer size / interval = buffer
allocations in MB/s

» Total writes per second * buffer size / interval = avg buffer
writes in MB/s

2ndQuadrant +

uuuuuuuuu | PostgresQL

Greg Smith In and Out of the PostgreSQL Shared Buffer Cache

Spreadsheet

» Sometimes slides are not what you want

2ndQuadrant

Professional PostgresSQL

Greg Smith In and Out of the PostgreSQL Shared Buffer Cache

lterative tuning with pg_buffercache and pg_stat_bgwriter

» Increase checkpoint_segments until time between is reasonable

» Increase shared_buffers until proportion of high usage count
buffers stop changing

» Positive changes should have a new MB/s write figure and
changed checkpoint statistics

» Optimize system toward more checkpoint writes, and total
writes should drop

» Go too far and the size of any one checkpoint may be
uncomfortably large, causing |/O spikes

» When performance stops improving, you've reached the limits
of usefully tuning in this area

2ndQuadrant +

uuuuuuuuu | PostgresQL

Greg Smith In and Out of the PostgreSQL Shared Buffer Cache

» Database buffer cache is possible to instrument usefully

» Saving regular usage snapshots allows tracking internals trends

» It's possible to measure the trade-offs made as you adjust
buffer cache and checkpoint parameters

» No one tuning is optimal for everyone, workloads have very
different usage count profiles

2ndQuadrant

Professional PostgresSQL

Greg Smith In and Out of the PostgreSQL Shared Buffer Cache

» Contributors toward the database statistics snapshots in the
spreadsheet:

» Kevin Grittner (Wisconsin Courts)
» Ben Chobot (Silent Media)

2ndQuadrant

Professional PostgresSQL

Greg Smith In and Out of the PostgreSQL Shared Buffer Cache

» The "cool” kids hang out on pgsql-performance

2ndQuadrant

Professional PostgresSQL

Greg Smith In and Out of the PostgreSQL Shared Buffer Cache

