
PostgreSQL as a secret weapon
for high-performance
Ruby on Rails applications

Gleb Arshinov, Alexander Dymo
PGCon 2010

www.acunote.com

Gleb Arshinov & Alex Dymo ● PostgreSQL as a secret weapon for high-performance Ruby on Rails applications ● PGCon 2010 2 / 58

About

Acunote www.acunote.com

Online project management and Scrum software

~7000 customers

Hosted on Own Servers

Hosted on Customer's Servers

nginx + mongrel

PostgreSQL 8.4

Gleb Arshinov, CEO, gleb@pluron.com
Alexander Dymo, Director of Engineering, adymo@pluron.com

Gleb Arshinov & Alex Dymo ● PostgreSQL as a secret weapon for high-performance Ruby on Rails applications ● PGCon 2010 3 / 58

Web Development Pains

● Performance

● Data integrity

● Developer productivity

Gleb Arshinov & Alex Dymo ● PostgreSQL as a secret weapon for high-performance Ruby on Rails applications ● PGCon 2010 4 / 58

Types of Web Apps

● Web apps range from Digg to a custom accounting system

● Your app is somewhere in between

Gleb Arshinov & Alex Dymo ● PostgreSQL as a secret weapon for high-performance Ruby on Rails applications ● PGCon 2010 5 / 58

Outline

● Rails as ORM

● Optimizing Rails With PostgreSQL

● PostgreSQL Limitations

● PostgreSQL Approaches

● Optimizing Database

Gleb Arshinov & Alex Dymo ● PostgreSQL as a secret weapon for high-performance Ruby on Rails applications ● PGCon 2010 6 / 58

Rails as ORM > Myths and Realities

Myth: not close to SQL

Gleb Arshinov & Alex Dymo ● PostgreSQL as a secret weapon for high-performance Ruby on Rails applications ● PGCon 2010 7 / 58

Rails as ORM > Myths and Realities

Close to SQL:
author = Author.find(:first)

 select * from authors limit 1;

articles = author.articles

 select * from articles where author_id = 1

author_name = “Orwell”

author = Author.find(:all, :conditions => [“name = ?”,
author_name])

 select * from authors where name = “Orwell”

Drop down to SQL easily:
author = Author.find_by_sql(“select * from authors
where authors.birthday > now()”)

Gleb Arshinov & Alex Dymo ● PostgreSQL as a secret weapon for high-performance Ruby on Rails applications ● PGCon 2010 8 / 58

Rails as ORM > Attribute Preloading

The conventional Rails way is not so bad:

Tasks Tags Tasks_Tags
id serial id serial tag_id integer
name varchar name varchar task_id integer

tasks = Task.find(:all, :include => :tags)

select * from tasks
select * from tags inner join tasks_tags

on tags.id = tasks_tags.tag_id
where tasks_tags.task_id in (1,2,3,..)

Gleb Arshinov & Alex Dymo ● PostgreSQL as a secret weapon for high-performance Ruby on Rails applications ● PGCon 2010 9 / 58

Rails as ORM > Multiplying Queries

But classical ORM problem exists:

create table Task (
 id serial not null,
 parent_id integer
)

class Task < ActiveRecord::Base
acts_as_tree

end

Uses N+1 database queries to load N nodes from the tree:

(root) select * from tasks where parent_id = nil
- 1 select * from tasks where parent_id = 1

- 11 select * from tasks where parent_id = 11
- 111 select * from tasks where parent_id = 111
- 112 select * from tasks where parent_id = 112

- 12 select * from tasks where parent_id = 12
- 2 select * from tasks where parent_id = 2

- 21 select * from tasks where parent_id = 21

Gleb Arshinov & Alex Dymo ● PostgreSQL as a secret weapon for high-performance Ruby on Rails applications ● PGCon 2010 10 / 58

Rails as ORM > Multiplying Queries

create table Task (
 id serial not null,
 parent_id integer
)

class Task < ActiveRecord::Base
acts_as_tree

end

Should rather be:

select * from tasks
left outer join

(select id as parents_id, parent_id as parents_parent_id from tasks)
as parents on (tasks.parent_id = parents_id)

left outer join
(select id as parents_parents_id from tasks)
as parents_parents on (parents_parent_id = parents_parents_id)

Gleb Arshinov & Alex Dymo ● PostgreSQL as a secret weapon for high-performance Ruby on Rails applications ● PGCon 2010 11 / 58

Rails as ORM > Generating Queries

1. Task tree (3 levels) (+2 joins & 1 subselect)

2. Task tags (+2 subselects)

3. Task property counters (+4 subselects)

4. Last "timecell" values (+4 joins to get group-wise maximum)

etc... - 12 joins and subselects

1

4

2

3

Gleb Arshinov & Alex Dymo ● PostgreSQL as a secret weapon for high-performance Ruby on Rails applications ● PGCon 2010 12 / 58

Rails as ORM > Generating Queries

All this done in 1 query in under 60ms even on EeePC!

Equivalent Ruby code took up to 8 sec!
133x!

Gleb Arshinov & Alex Dymo ● PostgreSQL as a secret weapon for high-performance Ruby on Rails applications ● PGCon 2010 13 / 58

Rails as ORM > Query Tests

rev 834: Show past and future sprints in the list

--- application_helper.rb
+++ application_helper.rb
@@ -456,8 +456,8 @@
sprints = []
sprints.concat current_project.sprints(:present)
+sprints.concat current_project.sprints(:past)
+sprints.concat current_project.sprints(:future)

Gleb Arshinov & Alex Dymo ● PostgreSQL as a secret weapon for high-performance Ruby on Rails applications ● PGCon 2010 14 / 58

Rails as ORM > Query Tests

rev 834: Show past and future sprints in the list

--- application_helper.rb
+++ application_helper.rb
@@ -456,8 +456,8 @@
sprints = []
sprints.concat current_project.sprints(:present)
+sprints.concat current_project.sprints(:past)
+sprints.concat current_project.sprints(:future)

Before After
Sprint 20 x (1+5) (C) 0.87 ± 0.01 0.88 ± 0.01

Gleb Arshinov & Alex Dymo ● PostgreSQL as a secret weapon for high-performance Ruby on Rails applications ● PGCon 2010 15 / 58

Rails as ORM > Query Tests

rev 834: Show past and future sprints in the list

--- application_helper.rb
+++ application_helper.rb
@@ -456,8 +456,8 @@
sprints = []
sprints.concat current_project.sprints(:present)
+sprints.concat current_project.sprints(:past)
+sprints.concat current_project.sprints(:future)

--- empty_controller_test.rb
+++ empty_controller_test.rb
@@ -79,11 +79,12 @@
 "Sprint Load",
+ "Sprint Load",
+ "Sprint Load",
 "common/_nav_dialog",
 "Project Load",

Gleb Arshinov & Alex Dymo ● PostgreSQL as a secret weapon for high-performance Ruby on Rails applications ● PGCon 2010 16 / 58

Rails as ORM > Query Tests

Query tests to make sure we don't fall into the
multiplying queries trap

def test_queries
queries = track_queries do

get :index
end
assert_equal queries, [

"Task Load",
"Tag Load",
"Event Create",
"SQL"

]
end

Gleb Arshinov & Alex Dymo ● PostgreSQL as a secret weapon for high-performance Ruby on Rails applications ● PGCon 2010 17 / 58

Rails as ORM > Query Tests

module ActiveSupport
class BufferedLogger

 attr_reader :tracked_queries

 def tracking=(val)
 @tracked_queries = []
 @tracking = val
 end

def add_with_tracking(severity, message = nil, progname = nil, &block)
 @tracked_queries << $1 if @tracking && message =~ /3[56]\;1m(.* (Load|Create|
Update|Destroy)) \(/
 @tracked_queries << $1 if @tracking && message =~ /3[56]\;1m(SQL) \(/
 add_without_tracking(severity, message, progname, &block)
 end
 alias_method_chain :add, :tracking

end
end

class ActiveSupport::TestCase
 def track_queries(&block)
 RAILS_DEFAULT_LOGGER.tracking = true
 yield
 result = RAILS_DEFAULT_LOGGER.tracked_queries
 RAILS_DEFAULT_LOGGER.tracking = false
 result
 end
end

Gleb Arshinov & Alex Dymo ● PostgreSQL as a secret weapon for high-performance Ruby on Rails applications ● PGCon 2010 18 / 58

Rails as ORM > Migrations

Use SQL DDL not Rails DSL

(unless targeting multiple RDBMS)

Schema in SQL vs Rails parlance

Migration in SQL

execute "
create table Foo (

id serial not null,
name varchar(20),
bar_id integer,

primary key (id),
foreign key (bar_id)

references Bar (id)
);

"

Migration in Rails parlance

create_table :foo do |t|
t.string :name, :limit => 20
t.references :bar

end

execute "alter table foo add
foreign key (bar_id)
references Bar (id)"

Gleb Arshinov & Alex Dymo ● PostgreSQL as a secret weapon for high-performance Ruby on Rails applications ● PGCon 2010 19 / 58

Rails as ORM > Data Integrity

● Myth - rails does not support constraints

● Actually not possible to assure data integrity in Rails

● Use constraints, rules, triggers and other database magic to

protect data integrity, not to implement business logic

● FK constraints -- everything should be RESTRICT

ON X SET NULL and CASCADE is a problem

Gleb Arshinov & Alex Dymo ● PostgreSQL as a secret weapon for high-performance Ruby on Rails applications ● PGCon 2010 20 / 58

Outline

● Rails as ORM

● Optimizing Rails with PostgreSQL

● PostgreSQL Limitations

● PostgreSQL Approaches

● Optimizing Database

Gleb Arshinov & Alex Dymo ● PostgreSQL as a secret weapon for high-performance Ruby on Rails applications ● PGCon 2010 21 / 58

Rails Performance > Ruby

● Good language, bad implementation

● Slow

● Unreliable

● Deal with it!

Gleb Arshinov & Alex Dymo ● PostgreSQL as a secret weapon for high-performance Ruby on Rails applications ● PGCon 2010 22 / 58

Rails Performance > Ruby

Compare to the database:

PostgreSQL:
explain analyze select sin(2+2) as hard_stuff;
 QUERY PLAN

 Result (cost=0.00..0.01 rows=1 width=0)

(actual time=0.001..0.002 rows=1 loops=1)
 Total runtime: 0.012 ms

Ruby:
Benchmark.realtime{ sin(2+2) }*1000

> 0.027 ms

13x!

Gleb Arshinov & Alex Dymo ● PostgreSQL as a secret weapon for high-performance Ruby on Rails applications ● PGCon 2010 23 / 58

Rails Performance > Rails

● Has a reputation of being slow

● Actually even slower

● Most of the time spent in GC

● CPU bound

● Doesn't parallelize

Gleb Arshinov & Alex Dymo ● PostgreSQL as a secret weapon for high-performance Ruby on Rails applications ● PGCon 2010 24 / 58

Rails Performance > Performance Tests

Keep a set of benchmarks for most frequent user requests.
For example:

Benchmark Burndown 120 0.70 ± 0.00
Benchmark Inc. Burndown 120 0.92 ± 0.01
Benchmark Sprint 20 x (1+5) (C) 0.45 ± 0.00
Benchmark Issues 100 (C) 0.34 ± 0.00
Benchmark Prediction 120 0.56 ± 0.00
Benchmark Progress 120 0.23 ± 0.00
Benchmark Sprint 20 x (1+5) 0.93 ± 0.00
Benchmark Timeline 5x100 0.11 ± 0.00
Benchmark Signup 0.77 ± 0.00
Benchmark Export 0.20 ± 0.00
Benchmark Move Here 20/120 0.89 ± 0.00
Benchmark Order By User 0.98 ± 0.00
Benchmark Set Field (EP) 0.21 ± 0.00
Benchmark Task Create + Tag 0.23 ± 0.00

 ... 30 more ...

Gleb Arshinov & Alex Dymo ● PostgreSQL as a secret weapon for high-performance Ruby on Rails applications ● PGCon 2010 25 / 58

Rails Performance > Performance Tests

Benchmarks as a special kind of tests:

class RenderingTest < ActionController::IntegrationTest

def test_sprint_rendering
 login_with users(:user), "user"

 benchmark :title => "Sprint 20 x (1+5) (C)",
 :route => "projects/1/sprints/3/show",
 :assert_template => "tasks/index"
 end

end

Benchmark Sprint 20 x (1+5) (C) 0.45 ± 0.00

Gleb Arshinov & Alex Dymo ● PostgreSQL as a secret weapon for high-performance Ruby on Rails applications ● PGCon 2010 26 / 58

Rails Performance > Performance Tests

Benchmarks as a special kind of tests:

def benchmark(options = {})
(0..100).each do |i|

GC.start
pid = fork do

begin
out = File.open("values", "a")
ActiveRecord::Base.transaction do

elapsed_time = Benchmark::realtime do
request_method = options[:post] ? :post : :get
send(request_method, options[:route])

end
out.puts elapsed_time if i > 0
out.close
raise CustomTransactionError

end
rescue CustomTransactionError

exit
end

end
Process::waitpid pid
ActiveRecord::Base.connection.reconnect!

end
values = File.read("values")
print "#{mean(values).to_02f} ± #{sigma(values).to_02f}\n"

end

Gleb Arshinov & Alex Dymo ● PostgreSQL as a secret weapon for high-performance Ruby on Rails applications ● PGCon 2010 27 / 58

Rails Performance > Solution

Scalability is not a substitute for performance

Gleb Arshinov & Alex Dymo ● PostgreSQL as a secret weapon for high-performance Ruby on Rails applications ● PGCon 2010 28 / 58

Rails Performance > Solution

Delegate as much

work as possible

to...

Gleb Arshinov & Alex Dymo ● PostgreSQL as a secret weapon for high-performance Ruby on Rails applications ● PGCon 2010 29 / 58

Rails Performance > Solution

Delegate as much

work as possible

to the database!

Gleb Arshinov & Alex Dymo ● PostgreSQL as a secret weapon for high-performance Ruby on Rails applications ● PGCon 2010 30 / 58

Rails Performance > Attribute Preloading

The conventional Rails way:

Tasks Tags Tasks_Tags
id serial id serial tag_id integer
name varchar name varchar task_id integer

tasks = Task.find(:all, :include => :tags)
> 0.058 sec

2 SQL queries
select * from tasks
select * from tags inner join tasks_tags

on tags.id = tasks_tags.tag_id
where tasks_tags.task_id in (1,2,3,..)

Rals creates an object for each tag,
that's not fast and takes memory

Gleb Arshinov & Alex Dymo ● PostgreSQL as a secret weapon for high-performance Ruby on Rails applications ● PGCon 2010 31 / 58

Rails Performance > Attribute Preloading

Faster with Postgres arrays:

Tasks Tags Tasks_Tags
id serial id serial tag_id integer
name varchar name varchar task_id integer

tasks = Task.find(:all, :select => "*,
array(select tags.name from tags inner join tasks_tags

on (tags.id = tasks_tags.tag_id)
where tasks_tasks.task_id=tasks.id) as tag_names

")
> 0.018 sec

1 SQL query
Rails doesn't have to create objects
>3x faster:

(was 0.058 sec, now 0.018 sec) 3x!

Gleb Arshinov & Alex Dymo ● PostgreSQL as a secret weapon for high-performance Ruby on Rails applications ● PGCon 2010 32 / 58

Rails Performance > Preloading Attributes

Faster with Postgres arrays:

Tasks Tags Tasks_Tags
id serial id serial tag_id integer
name varchar name varchar task_id integer

tasks = Task.find(:all, :select => "*,
array(select tags.name from tags inner join tasks_tags

on (tags.id = tasks_tags.tag_id)
where tasks_tasks.task_id=tasks.id) as tag_names

")

puts tasks.first.tag_names
> "{Foo,Bar,Zee}"

Gleb Arshinov & Alex Dymo ● PostgreSQL as a secret weapon for high-performance Ruby on Rails applications ● PGCon 2010 33 / 58

Rails Performance > Access Control

Simplified model for user privilege management:

Users Role Roles_Users
id serial id serial user_id integer
name varchar name varchar role_id integer

privilege1 boolean
privilege2 boolean
...

user = User.find(:first, :include => :roles)

can_do_1 = user.roles.any { |role| role.privilege1? }

Gleb Arshinov & Alex Dymo ● PostgreSQL as a secret weapon for high-performance Ruby on Rails applications ● PGCon 2010 34 / 58

Rails Performance > Access Control

Simplified model for user privilege management:

Users Role Roles_Users
id serial id serial user_id integer
name varchar name varchar role_id integer

privilege1 boolean
privilege2 boolean
...

user = User.find(:first, :include => :roles)

can_do_1 = user.roles.any { |role| role.privilege1? }

Where is the problem?
- 2 SQL queries
- Rails has to create objects for each role
- Ruby iterates over the roles array

Gleb Arshinov & Alex Dymo ● PostgreSQL as a secret weapon for high-performance Ruby on Rails applications ● PGCon 2010 35 / 58

Rails Performance > Access Control

Same in SQL:

Users Role Roles_Users
id serial id serial user_id integer
name varchar name varchar role_id integer

privilege1 boolean
privilege2 boolean

user = User.find(:first, :select => "*",
:joins => "

 inner join
 (select user_id, bool_or(privilege1) as privilege1
 from roles_users
 inner join roles
 on (roles.id = roles_users.role_id)
 group by user_id)
 as roles_users
 on (users.id = roles_users.user_id)

"
)

can_do_1 = ActiveRecord::ConnectionAdapters::Column.
value_to_boolean(user.privilege1)

Gleb Arshinov & Alex Dymo ● PostgreSQL as a secret weapon for high-performance Ruby on Rails applications ● PGCon 2010 36 / 58

Rails Performance > Access Control

Optimization Effect:

can_do_1 = user.roles.any { |role| role.privilege1? }

> 2.1 sec

can_do_1 = ActiveRecord::ConnectionAdapters::Column.
value_to_boolean(user.privilege1)

> 64 msec !!!

Gleb Arshinov & Alex Dymo ● PostgreSQL as a secret weapon for high-performance Ruby on Rails applications ● PGCon 2010 37 / 58

Rails Performance > Aggregations

Perform calculations and aggregations

on large datasets in SQL:

real life example:
600 000 data rows, 3-dimensional OLAP cube,

slicing and aggregation:

Ruby:~1 Gb RAM, ~90 sec

SQL: up to 5 sec

Gleb Arshinov & Alex Dymo ● PostgreSQL as a secret weapon for high-performance Ruby on Rails applications ● PGCon 2010 38 / 58

Outline

● Rails as ORM

● Rails Performance and PostgreSQL

● PostgreSQL Experience

● PostgreSQL Approaches

● Optimizing Database

Gleb Arshinov & Alex Dymo ● PostgreSQL as a secret weapon for high-performance Ruby on Rails applications ● PGCon 2010 39 / 58

Postgres Experience > Good Things

Good things about Postgres:

● SQL standard compliance (and useful non-standard addons)

● good documentation

● sustainable development

● good optimizer and EXPLAIN ANALYZE

● a lot of things can be expressed in pure SQLConstraints

● referential integrity

● deadlock detection

Gleb Arshinov & Alex Dymo ● PostgreSQL as a secret weapon for high-performance Ruby on Rails applications ● PGCon 2010 40 / 58

Postgres Experience > Good Things

Good things that were introduced recently:

● replication (warm and hot standby, streaming replication)

● windowing functions

● recursive queries

● ordering for aggregates

Gleb Arshinov & Alex Dymo ● PostgreSQL as a secret weapon for high-performance Ruby on Rails applications ● PGCon 2010 41 / 58

Postgres Experience > Limitations

And now... limitations

Gleb Arshinov & Alex Dymo ● PostgreSQL as a secret weapon for high-performance Ruby on Rails applications ● PGCon 2010 42 / 58

Postgres Experience > Limit/Offset

Pagination VS Subselects:

select *,
(select count(*) from attachments

where issue_id = issues.id) as num_attachments
from issues
limit 100 offset 0;

Limit (cost=0.00..831.22 rows=100 width=143) (actual time=0.050..1.242 rows=100 loops=1)
 -> Seq Scan on issues (cost=0.00..2509172.92 rows=301866 width=143)

(actual time=0.049..1.119 rows=100 loops=1)
 SubPlan
 -> Aggregate (cost=8.27..8.28 rows=1 width=0)

(actual time=0.006..0.006 rows=1 loops=100)
 -> Index Scan using attachments_issue_id_idx on attachments
(cost=0.00..8.27 rows=1 width=0) (actual time=0.004..0.004 rows=0 loops=100)
 Index Cond: (issue_id = $0)
Total runtime: 1.383 ms

Gleb Arshinov & Alex Dymo ● PostgreSQL as a secret weapon for high-performance Ruby on Rails applications ● PGCon 2010 43 / 58

Postgres Experience > Limit/Offset

Pagination VS Subselects:

select *,
(select count(*) from attachments

where issue_id = issues.id) as num_attachments
from issues
limit 100 offset 100;

Limit (cost=831.22..1662.44 rows=100 width=143) (actual time=1.070..7.927 rows=100 loops=1)
 -> Seq Scan on issues (cost=0.00..2509172.92 rows=301866 width=143)

(actual time=0.039..7.763 rows=200 loops=1)
 SubPlan
 -> Aggregate (cost=8.27..8.28 rows=1 width=0)

(actual time=0.034..0.034 rows=1 loops=200)
 -> Index Scan using attachments_issue_id_idx on attachments
(cost=0.00..8.27 rows=1 width=0) (actual time=0.032..0.032 rows=0 loops=200)
 Index Cond: (issue_id = $0)
 Total runtime: 8.065 ms

Gleb Arshinov & Alex Dymo ● PostgreSQL as a secret weapon for high-performance Ruby on Rails applications ● PGCon 2010 44 / 58

Postgres Experience > Limit/Offset

Be careful with subselects:

they are executed limit + offset times!

Use joins to overcome the limitation

Gleb Arshinov & Alex Dymo ● PostgreSQL as a secret weapon for high-performance Ruby on Rails applications ● PGCon 2010 45 / 58

Postgres Experience > in() and Joins

Use any(array ()) instead of in()

to force subselect and avoid join

explain analyze select * from issues where id in (select issue_id from tags_issues);

 QUERY PLAN

 Merge IN Join (actual time=0.096..576.704 rows=55363 loops=1)
 Merge Cond: (issues.id = tags_issues.issue_id)
 -> Index Scan using issues_pkey on issues (actual time=0.027..270.557 rows=229991 loops=1)
 -> Index Scan using tags_issues_issue_id_key on tags_issues (actual time=0.051..73.903 rows=70052loops=1)
 Total runtime: 605.274 ms

explain analyze select * from issues where id = any(array((select issue_id from tags_issues)));

 QUERY PLAN
--
 Bitmap Heap Scan on issues (actual time=247.358..297.932 rows=55363 loops=1)
 Recheck Cond: (id = ANY ($0))
 InitPlan
 -> Seq Scan on tags_issues (actual time=0.017..51.291 rows=70052 loops=1)
 -> Bitmap Index Scan on issues_pkey (actual time=246.589..246.589 rows=70052 loops=1)
 Index Cond: (id = ANY ($0))
 Total runtime: 325.205 ms

2x!

Gleb Arshinov & Alex Dymo ● PostgreSQL as a secret weapon for high-performance Ruby on Rails applications ● PGCon 2010 46 / 58

Postgres Experience > generate_series()

select * from
 (select *, (select min(split_date) from tasks

 where tasks.issue_id = issues.id) as split_date
from issues where org_id = 2) as issues,

 (select generate_series(0,10) + date '2010-01-01' as date) as dates

QUERY PLAN
--
 Nested Loop (actual time=2.581..2525.798 rows=149666 loops=1)
 -> Result (actual time=0.007..0.063 rows=11 loops=1)
 -> Bitmap Heap Scan on issues (actual time=2.697..47.756 rows=13606 loops=11)
 Recheck Cond: (public.issues.org_id = 2)
 -> Bitmap Index Scan on issues_org_id_idx (actual time=1.859..1.859 rows=13607
loops=11)
 Index Cond: (public.issues.org_id = 2)
 SubPlan 1
 -> Aggregate (actual time=0.010..0.010 rows=1 loops=149666)
 -> Index Scan using tasks_issue_id_key on tasks (actual time=0.006..0.008
rows=1 loops=149666)
 Index Cond: (issue_id = $0)

 Total runtime: 2608.891 ms

Gleb Arshinov & Alex Dymo ● PostgreSQL as a secret weapon for high-performance Ruby on Rails applications ● PGCon 2010 47 / 58

Postgres Experience > generate_series()

select * from
 (select * from issues
 left outer join (
 select issue_id, min(split_date) as split_date from tasks

 where org_id = 2 group by issue_id
) tasks
 on (tasks.issue_id = issues.id) where org_id = 2) as issues,
 (select generate_series(0,10) + date '2010-01-01' as date) as dates

QUERY PLAN
--
 Nested Loop (actual time=174.706..831.263 rows=149666 loops=1)
 -> Result (actual time=0.006..0.055 rows=11 loops=1)
 -> Merge Left Join (actual time=15.885..60.496 rows=13606 loops=11)
 Merge Cond: (public.issues.id = public.tasks.issue_id)
 -> Sort (actual time=8.048..18.068 rows=13606 loops=11)
 -> Bitmap Heap Scan on issues (actual time=2.7..55 rows=13606 loops=1)
 Recheck Cond: (org_id = 2)
 -> Bitmap Index Scan on issues_org_id_idx (actual time=1.912..1.>>
 Index Cond: (org_id = 2)
 -> Sort (actual time=7.834..15.519 rows=13202 loops=11)
 -> HashAggregate (actual time=62.150..71.767 rows=13202 loops=1)
 -> Bitmap Heap Scan on tasks (actual time=3.177..41.700 rows=18>>
 Recheck Cond: (org_id = 2)
 -> Bitmap Index Scan on tasks_org_id_idx (actual time=2.50>>
 Index Cond: (org_id = 2)
 Total runtime: 906.146 ms

Gleb Arshinov & Alex Dymo ● PostgreSQL as a secret weapon for high-performance Ruby on Rails applications ● PGCon 2010 48 / 58

Outline

● Rails as ORM

● Rails Performance and PostgreSQL

● PostgreSQL Limitations

● PostgreSQL Approaches

● Optimizing Database

Gleb Arshinov & Alex Dymo ● PostgreSQL as a secret weapon for high-performance Ruby on Rails applications ● PGCon 2010 49 / 58

Postgres Approaches

● Benchmarking/performance

● Distrust vendors

● Sane appreciation of commodity hardware

● Culture of operations

● Release management

Gleb Arshinov & Alex Dymo ● PostgreSQL as a secret weapon for high-performance Ruby on Rails applications ● PGCon 2010 50 / 58

Outline

● Rails as ORM

● Rails Performance and PostgreSQL

● PostgreSQL Experience

● PostgreSQL Approaches

● Optimizing Database

Gleb Arshinov & Alex Dymo ● PostgreSQL as a secret weapon for high-performance Ruby on Rails applications ● PGCon 2010 51 / 58

Optimize Database > Basics

How to optimize PostgreSQL:

explain analyze

explain analyze

explain analyze

...

Gleb Arshinov & Alex Dymo ● PostgreSQL as a secret weapon for high-performance Ruby on Rails applications ● PGCon 2010 52 / 58

Optimize Database > Cold DB Tip

EXPLAIN ANALYZE explains everything, but...

... run it also for the "cold" database state!

Example: complex query which works on 230 000 rows and

does 9 subselects / joins:

cold state: 28 sec, hot state: 2.42 sec

Database server restart doesn't help

Need to clear disk cache:

sudo echo 3 | sudo tee /proc/sys/vm/drop_caches

(Linux)

Gleb Arshinov & Alex Dymo ● PostgreSQL as a secret weapon for high-performance Ruby on Rails applications ● PGCon 2010 53 / 58

Optimize Database > Shared Database

You're competing for memory cache on a shared server:

1. two databases with equal load share the cache

Gleb Arshinov & Alex Dymo ● PostgreSQL as a secret weapon for high-performance Ruby on Rails applications ● PGCon 2010 54 / 58

Optimize Database > Shared Database

You're competing for memory cache on a shared server:

2. one of the databases gets more load and wins the cache

Gleb Arshinov & Alex Dymo ● PostgreSQL as a secret weapon for high-performance Ruby on Rails applications ● PGCon 2010 55 / 58

Optimize Database > Shared Database

As a result, your database can always be in a "cold" state

and you read data from disk, not from memory!

complex query which works on 230 000 rows and

does 9 subselects / joins:

from disk: 28 sec, from memory: 2.42 sec

Solutions:

optimize for IO/cold state

push down SQL conditions

sudo echo 3 | sudo tee /proc/sys/vm/drop_caches

Gleb Arshinov & Alex Dymo ● PostgreSQL as a secret weapon for high-performance Ruby on Rails applications ● PGCon 2010 56 / 58

Optimize Database > Postgres Config

How much memory we have to cache the database, RAM_FOR_DATABASE * 3/4

effective_cache_size = <%= ram_for_database.to_i * 3/4 %>MB

Shared memory to hold data in RAM, RAM_FOR_DATABASE/4

shared_buffers = <%= ram_for_database.to_i / 3 %>MB

Work memory for queries (RAM_FOR_DATABASE/max_connections) ROUND DOWN 2^x

work_mem = <%= 2**(Math.log(ram_for_database.to_i / expected_max_active_connections.to_i)/Math.log(2)).floor %>MB

Memory for vacuum, autovacuum, index creation, RAM/16 ROUND DOWN 2^x

maintenance_work_mem = <%= 2**(Math.log(ram_for_database.to_i / 16)/Math.log(2)).floor %>MB

To ensure that we don't lose data, always fsync after commit

synchronous_commit = on

Size of WAL on disk, recommended setting: 16

checkpoint_segments = 16

WAL memory buffer

wal_buffers = 8MB

Ensure autovacuum is always turned on

autovacuum = on

Set the number of concurrent disk I/O operations that PostgreSQL expects can be executed simultaneously.

effective_io_concurrency = 4

Gleb Arshinov & Alex Dymo ● PostgreSQL as a secret weapon for high-performance Ruby on Rails applications ● PGCon 2010 57 / 58

Optimize Database > Postgres Config

Effect from better configuration:

Query Default
Settings

Custom
Settings

Effect

Aggregation on a
large dataset

8205 ms 7685 ms 6%

Query with complex
joins and subselects

229 ms 143 ms 38%

Gleb Arshinov & Alex Dymo ● PostgreSQL as a secret weapon for high-performance Ruby on Rails applications ● PGCon 2010 58 / 58

Thanks!

Rails performance articles and more:
http://blog.pluron.com

Gleb Arshinov
CEO
gleb@pluron.com

Alexander Dymo
Director of Engineering
adymo@pluron.com

	Слайд 1
	Слайд 2
	Слайд 3
	Слайд 4
	Слайд 5
	Слайд 6
	Слайд 7
	Слайд 8
	Слайд 9
	Слайд 10
	Слайд 11
	Слайд 12
	Слайд 13
	Слайд 14
	Слайд 15
	Слайд 16
	Слайд 17
	Слайд 18
	Слайд 19
	Слайд 20
	Слайд 21
	Слайд 22
	Слайд 23
	Слайд 24
	Слайд 25
	Слайд 26
	Слайд 27
	Слайд 28
	Слайд 29
	Слайд 30
	Слайд 31
	Слайд 32
	Слайд 33
	Слайд 34
	Слайд 35
	Слайд 36
	Слайд 37
	Слайд 38
	Слайд 39
	Слайд 40
	Слайд 41
	Слайд 42
	Слайд 43
	Слайд 44
	Слайд 45
	Слайд 46
	Слайд 47
	Слайд 48
	Слайд 49
	Слайд 50
	Слайд 51
	Слайд 52
	Слайд 53
	Слайд 54
	Слайд 55
	Слайд 56
	Слайд 57
	Слайд 58

