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Web Development Pains

● Performance

● Data integrity

● Developer productivity
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Types of Web Apps

● Web apps range from Digg to a custom accounting system

● Your app is somewhere in between
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Outline

● Rails as ORM

● Optimizing Rails With PostgreSQL

● PostgreSQL Limitations

● PostgreSQL Approaches

● Optimizing Database
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Rails as ORM > Myths and Realities

Myth: not close to SQL
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Rails as ORM > Myths and Realities

Close to SQL:
author = Author.find(:first)

 select * from authors limit 1;

articles = author.articles

 select * from articles where author_id = 1

author_name = “Orwell”

author = Author.find(:all, :conditions => [“name = ?”, 
author_name])

 select * from authors where name = “Orwell”

Drop down to SQL easily:
author = Author.find_by_sql(“select * from authors 
where authors.birthday > now()”)
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Rails as ORM > Attribute Preloading

The conventional Rails way is not so bad:

Tasks Tags Tasks_Tags
id serial id serial tag_id integer
name varchar name varchar task_id integer

tasks = Task.find(:all, :include => :tags)

select * from tasks
select * from tags inner join tasks_tags

on tags.id = tasks_tags.tag_id
where tasks_tags.task_id in (1,2,3,..)
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Rails as ORM > Multiplying Queries

But classical ORM problem exists:

create table Task (
  id serial not null,
  parent_id integer
)

class Task < ActiveRecord::Base
acts_as_tree

end

Uses N+1 database queries to load N nodes from the tree:

(root) select * from tasks where parent_id = nil
- 1 select * from tasks where parent_id = 1

- 11 select * from tasks where parent_id = 11
- 111 select * from tasks where parent_id = 111
- 112 select * from tasks where parent_id = 112

- 12 select * from tasks where parent_id = 12
- 2 select * from tasks where parent_id = 2

- 21 select * from tasks where parent_id = 21
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Rails as ORM > Multiplying Queries

 

create table Task (
  id serial not null,
  parent_id integer
)

class Task < ActiveRecord::Base
acts_as_tree

end

Should rather be:

select * from tasks 
left outer join

(select id as parents_id, parent_id as parents_parent_id from tasks)
as parents on (tasks.parent_id = parents_id)

left outer join 
(select id as parents_parents_id from tasks)
as parents_parents on (parents_parent_id = parents_parents_id)
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Rails as ORM > Generating Queries

1. Task tree (3 levels) (+2 joins & 1 subselect)

2. Task tags (+2 subselects)

3. Task property counters (+4 subselects)

4. Last "timecell" values (+4 joins to get group-wise maximum)

etc... - 12 joins and subselects

1

4

2

3
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Rails as ORM > Generating Queries

All this done in 1 query in under 60ms even on EeePC!

Equivalent Ruby code took up to 8 sec!
133x!
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Rails as ORM > Query Tests

rev 834: Show past and future sprints in the list

--- application_helper.rb
+++ application_helper.rb
@@ -456,8 +456,8 @@
sprints = []
sprints.concat current_project.sprints(:present)
+sprints.concat current_project.sprints(:past)
+sprints.concat current_project.sprints(:future)



Gleb Arshinov & Alex Dymo ● PostgreSQL as a secret weapon for high-performance Ruby on Rails applications ● PGCon 2010 14 / 58

Rails as ORM > Query Tests

rev 834: Show past and future sprints in the list

--- application_helper.rb
+++ application_helper.rb
@@ -456,8 +456,8 @@
sprints = []
sprints.concat current_project.sprints(:present)
+sprints.concat current_project.sprints(:past)
+sprints.concat current_project.sprints(:future)

Before After
Sprint 20 x (1+5) (C)   0.87 ± 0.01 0.88 ± 0.01
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Rails as ORM > Query Tests

rev 834: Show past and future sprints in the list

--- application_helper.rb
+++ application_helper.rb
@@ -456,8 +456,8 @@
sprints = []
sprints.concat current_project.sprints(:present)
+sprints.concat current_project.sprints(:past)
+sprints.concat current_project.sprints(:future)

--- empty_controller_test.rb
+++ empty_controller_test.rb
@@ -79,11 +79,12 @@
            "Sprint Load",
+            "Sprint Load",
+            "Sprint Load",
            "common/_nav_dialog",
            "Project Load",
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Rails as ORM > Query Tests

Query tests to make sure we don't fall into the 
multiplying queries trap

def test_queries
queries = track_queries do

get :index
end
assert_equal queries, [

"Task Load",
"Tag Load",
"Event Create",
"SQL"

]
end
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Rails as ORM > Query Tests

module ActiveSupport
class BufferedLogger

    attr_reader :tracked_queries

    def tracking=(val)
        @tracked_queries = []
        @tracking = val
    end
    

def add_with_tracking(severity, message = nil, progname = nil, &block)
        @tracked_queries << $1 if @tracking && message =~ /3[56]\;1m(.* (Load|Create|
Update|Destroy)) \(/
        @tracked_queries << $1 if @tracking && message =~ /3[56]\;1m(SQL) \(/
        add_without_tracking(severity, message, progname, &block)
    end
    alias_method_chain :add, :tracking

end
end

class ActiveSupport::TestCase
    def track_queries(&block)
        RAILS_DEFAULT_LOGGER.tracking = true
        yield
        result = RAILS_DEFAULT_LOGGER.tracked_queries
        RAILS_DEFAULT_LOGGER.tracking = false
        result
    end
end
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Rails as ORM > Migrations

Use SQL DDL not Rails DSL 

(unless targeting multiple RDBMS)

Schema in SQL vs Rails parlance

Migration in SQL

execute "
create table Foo (

id serial not null,
name varchar(20),
bar_id integer,

primary key (id),
foreign key (bar_id)

references Bar (id)
);

"

Migration in Rails parlance

create_table :foo do |t|
t.string :name, :limit => 20
t.references :bar

end

execute "alter table foo add 
foreign key (bar_id) 
references Bar (id)"
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Rails as ORM > Data Integrity

● Myth - rails does not support constraints

● Actually not possible to assure data integrity in Rails

● Use constraints, rules, triggers and other database magic to 

protect data integrity, not to implement business logic

● FK constraints -- everything should be RESTRICT

ON X SET NULL and CASCADE is a problem
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Outline

● Rails as ORM

● Optimizing Rails with PostgreSQL

● PostgreSQL Limitations

● PostgreSQL Approaches

● Optimizing Database
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Rails Performance > Ruby

● Good language, bad implementation

● Slow

● Unreliable

● Deal with it!
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Rails Performance > Ruby

Compare to the database:

PostgreSQL:
explain analyze select sin(2+2) as hard_stuff;
                            QUERY PLAN
-------------------------------------------------------------------
 Result  (cost=0.00..0.01 rows=1 width=0) 

(actual time=0.001..0.002 rows=1 loops=1)
 Total runtime: 0.012 ms

Ruby:
Benchmark.realtime{ sin(2+2) }*1000

> 0.027 ms

13x!
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Rails Performance > Rails

● Has a reputation of being slow

● Actually even slower

● Most of the time spent in GC

● CPU bound

● Doesn't parallelize
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Rails Performance > Performance Tests

Keep a set of benchmarks for most frequent user requests.
For example:

Benchmark Burndown 120                 0.70 ± 0.00
Benchmark Inc. Burndown 120            0.92 ± 0.01
Benchmark Sprint 20 x (1+5) (C)        0.45 ± 0.00
Benchmark Issues 100 (C)               0.34 ± 0.00
Benchmark Prediction 120               0.56 ± 0.00
Benchmark Progress 120                 0.23 ± 0.00
Benchmark Sprint 20 x (1+5)            0.93 ± 0.00
Benchmark Timeline 5x100               0.11 ± 0.00
Benchmark Signup                       0.77 ± 0.00
Benchmark Export                       0.20 ± 0.00
Benchmark Move Here 20/120             0.89 ± 0.00
Benchmark Order By User                0.98 ± 0.00
Benchmark Set Field (EP)               0.21 ± 0.00
Benchmark Task Create + Tag            0.23 ± 0.00

              ... 30 more ...



Gleb Arshinov & Alex Dymo ● PostgreSQL as a secret weapon for high-performance Ruby on Rails applications ● PGCon 2010 25 / 58

Rails Performance > Performance Tests

Benchmarks as a special kind of tests:

class RenderingTest < ActionController::IntegrationTest
    

def test_sprint_rendering
        login_with users(:user), "user"

      benchmark :title => "Sprint 20 x (1+5) (C)",
        :route => "projects/1/sprints/3/show",
            :assert_template => "tasks/index"
    end

end

Benchmark Sprint 20 x (1+5) (C)        0.45 ± 0.00
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Rails Performance > Performance Tests

Benchmarks as a special kind of tests:

def benchmark(options = {})
(0..100).each do |i|

GC.start
pid = fork do

begin
out = File.open("values", "a")
ActiveRecord::Base.transaction do

elapsed_time = Benchmark::realtime do
request_method = options[:post] ? :post : :get
send(request_method, options[:route])

end
out.puts elapsed_time if i > 0
out.close
raise CustomTransactionError

end
rescue CustomTransactionError

exit
end

end
Process::waitpid pid
ActiveRecord::Base.connection.reconnect!

end
values = File.read("values")
print "#{mean(values).to_02f} ± #{sigma(values).to_02f}\n"

end
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Rails Performance > Solution

Scalability is not a substitute for performance
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Rails Performance > Solution

Delegate as much 

work as possible 

to... 
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Rails Performance > Solution

Delegate as much 

work as possible 

to the database! 
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Rails Performance > Attribute Preloading

The conventional Rails way:

Tasks Tags Tasks_Tags
id serial id serial tag_id integer
name varchar name varchar task_id integer

tasks = Task.find(:all, :include => :tags)
> 0.058 sec

2 SQL queries
select * from tasks
select * from tags inner join tasks_tags

on tags.id = tasks_tags.tag_id
where tasks_tags.task_id in (1,2,3,..)

Rals creates an object for each tag,
that's not fast and takes memory
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Rails Performance > Attribute Preloading

Faster with Postgres arrays:

Tasks Tags Tasks_Tags
id serial id serial tag_id integer
name varchar name varchar task_id integer

tasks = Task.find(:all, :select => "*, 
array(select tags.name from tags inner join tasks_tags 

on (tags.id = tasks_tags.tag_id)
where tasks_tasks.task_id=tasks.id) as tag_names

")
> 0.018 sec

1 SQL query
Rails doesn't have to create objects
>3x faster:

(was 0.058 sec, now 0.018 sec) 3x!
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Rails Performance > Preloading Attributes

Faster with Postgres arrays:

Tasks Tags Tasks_Tags
id serial id serial tag_id integer
name varchar name varchar task_id integer

tasks = Task.find(:all, :select => "*, 
array(select tags.name from tags inner join tasks_tags 

on (tags.id = tasks_tags.tag_id)
where tasks_tasks.task_id=tasks.id) as tag_names

")

puts tasks.first.tag_names
> "{Foo,Bar,Zee}"



Gleb Arshinov & Alex Dymo ● PostgreSQL as a secret weapon for high-performance Ruby on Rails applications ● PGCon 2010 33 / 58

Rails Performance > Access Control

Simplified model for user privilege management:

Users Role Roles_Users
id serial id serial user_id integer
name varchar name varchar role_id integer

privilege1 boolean
privilege2 boolean
...

user = User.find(:first, :include => :roles)

can_do_1 = user.roles.any { |role| role.privilege1? }
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Rails Performance > Access Control

Simplified model for user privilege management:

Users Role Roles_Users
id serial id serial user_id integer
name varchar name varchar role_id integer

privilege1 boolean
privilege2 boolean
...

user = User.find(:first, :include => :roles)

can_do_1 = user.roles.any { |role| role.privilege1? }

Where is the problem?
- 2 SQL queries
- Rails has to create objects for each role
- Ruby iterates over the roles array
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Rails Performance > Access Control

Same in SQL:

Users Role Roles_Users
id serial id serial user_id integer
name varchar name varchar role_id integer

privilege1 boolean
privilege2 boolean

user = User.find(:first, :select => "*",
:joins => "

    inner join
        (select user_id, bool_or(privilege1) as privilege1
            from roles_users
            inner join roles
            on (roles.id = roles_users.role_id)
            group by user_id)
        as roles_users
    on (users.id = roles_users.user_id)

"
)

can_do_1 = ActiveRecord::ConnectionAdapters::Column.
value_to_boolean(user.privilege1)
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Rails Performance > Access Control

Optimization Effect:

can_do_1 = user.roles.any { |role| role.privilege1? }

> 2.1 sec

can_do_1 = ActiveRecord::ConnectionAdapters::Column.
value_to_boolean(user.privilege1)

> 64 msec !!!
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Rails Performance > Aggregations

Perform calculations and aggregations 

on large datasets in SQL:

real life example:
600 000 data rows, 3-dimensional OLAP cube, 

slicing and aggregation:

Ruby:~1 Gb RAM, ~90 sec

SQL: up to 5 sec
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Outline

● Rails as ORM

● Rails Performance and PostgreSQL

● PostgreSQL Experience

● PostgreSQL Approaches

● Optimizing Database
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Postgres Experience > Good Things

Good things about Postgres:

● SQL standard compliance (and useful non-standard addons)

● good documentation

● sustainable development

● good optimizer and EXPLAIN ANALYZE

● a lot of things can be expressed in pure SQLConstraints

● referential integrity

● deadlock detection
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Postgres Experience > Good Things

Good things that were introduced recently:

● replication (warm and hot standby, streaming replication)

● windowing functions

● recursive queries

● ordering for aggregates
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Postgres Experience > Limitations

And now... limitations
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Postgres Experience > Limit/Offset

Pagination VS Subselects:

select *, 
(select count(*) from attachments 

where issue_id = issues.id) as num_attachments 
from issues
limit 100 offset 0;

Limit  (cost=0.00..831.22 rows=100 width=143) (actual time=0.050..1.242 rows=100 loops=1)
   ->  Seq Scan on issues  (cost=0.00..2509172.92 rows=301866 width=143) 

(actual time=0.049..1.119 rows=100 loops=1)
         SubPlan
           ->  Aggregate  (cost=8.27..8.28 rows=1 width=0) 

(actual time=0.006..0.006 rows=1 loops=100)
                 ->  Index Scan using attachments_issue_id_idx on attachments  
(cost=0.00..8.27 rows=1 width=0) (actual time=0.004..0.004 rows=0 loops=100)
                       Index Cond: (issue_id = $0)
Total runtime: 1.383 ms
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Postgres Experience > Limit/Offset

Pagination VS Subselects:

select *, 
(select count(*) from attachments 

where issue_id = issues.id) as num_attachments 
from issues
limit 100 offset 100;

Limit  (cost=831.22..1662.44 rows=100 width=143) (actual time=1.070..7.927 rows=100 loops=1)
   ->  Seq Scan on issues  (cost=0.00..2509172.92 rows=301866 width=143) 

(actual time=0.039..7.763 rows=200 loops=1)
         SubPlan
           ->  Aggregate  (cost=8.27..8.28 rows=1 width=0) 

(actual time=0.034..0.034 rows=1 loops=200)
                 ->  Index Scan using attachments_issue_id_idx on attachments  
(cost=0.00..8.27 rows=1 width=0) (actual time=0.032..0.032 rows=0 loops=200)
                       Index Cond: (issue_id = $0)
 Total runtime: 8.065 ms
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Postgres Experience > Limit/Offset

Be careful with subselects:

they are executed limit + offset times!

Use joins to overcome the limitation
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Postgres Experience > in() and Joins

Use any(array ()) instead of in() 

to force subselect and avoid join 

explain analyze select * from issues where id in (select issue_id from tags_issues);

                                                                      QUERY PLAN
-------------------------------------------------------------------------------------------------------------------------------------------------------
 Merge IN Join  (actual time=0.096..576.704 rows=55363 loops=1)
   Merge Cond: (issues.id = tags_issues.issue_id)
   ->  Index Scan using issues_pkey on issues  (actual time=0.027..270.557 rows=229991 loops=1)
   ->  Index Scan using tags_issues_issue_id_key on tags_issues  (actual time=0.051..73.903 rows=70052loops=1)
 Total runtime: 605.274 ms

explain analyze select * from issues where id = any( array( (select issue_id from tags_issues) ) );

                                                          QUERY PLAN
------------------------------------------------------------------------------------------------------------------------------
 Bitmap Heap Scan on issues  (actual time=247.358..297.932 rows=55363 loops=1)
   Recheck Cond: (id = ANY ($0))
   InitPlan
     ->  Seq Scan on tags_issues  (actual time=0.017..51.291 rows=70052 loops=1)
   ->  Bitmap Index Scan on issues_pkey  (actual time=246.589..246.589 rows=70052 loops=1)
         Index Cond: (id = ANY ($0))
 Total runtime: 325.205 ms

2x!
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Postgres Experience > generate_series()

select * from
    (select *, (select min(split_date) from tasks

 where tasks.issue_id = issues.id) as split_date 
from issues where org_id = 2) as issues,

    (select generate_series(0,10) + date '2010-01-01' as date) as dates

QUERY PLAN
----------------------------------------------------------------------------------------
 Nested Loop  (actual time=2.581..2525.798 rows=149666 loops=1)
   ->  Result  (actual time=0.007..0.063 rows=11 loops=1)
   ->  Bitmap Heap Scan on issues  (actual time=2.697..47.756 rows=13606 loops=11)
         Recheck Cond: (public.issues.org_id = 2)
         ->  Bitmap Index Scan on issues_org_id_idx (actual time=1.859..1.859 rows=13607 
loops=11)
               Index Cond: (public.issues.org_id = 2)
   SubPlan 1
     ->  Aggregate  (actual time=0.010..0.010 rows=1 loops=149666)
           ->  Index Scan using tasks_issue_id_key on tasks (actual time=0.006..0.008 
rows=1 loops=149666)
                 Index Cond: (issue_id = $0)

 Total runtime: 2608.891 ms
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Postgres Experience > generate_series()

select * from
    (select * from issues
        left outer join (
            select issue_id, min(split_date) as split_date from tasks 

 where org_id = 2 group by issue_id
        ) tasks
        on (tasks.issue_id = issues.id) where org_id = 2) as issues,
    (select generate_series(0,10) + date '2010-01-01' as date) as dates

QUERY PLAN
----------------------------------------------------------------------------------------
 Nested Loop  (actual time=174.706..831.263 rows=149666 loops=1)
   ->  Result  (actual time=0.006..0.055 rows=11 loops=1)
   ->  Merge Left Join  (actual time=15.885..60.496 rows=13606 loops=11)
         Merge Cond: (public.issues.id = public.tasks.issue_id)
         ->  Sort  (actual time=8.048..18.068 rows=13606 loops=11)
               ->  Bitmap Heap Scan on issues  (actual time=2.7..55 rows=13606 loops=1)
                     Recheck Cond: (org_id = 2)
                     ->  Bitmap Index Scan on issues_org_id_idx (actual time=1.912..1.>>
                           Index Cond: (org_id = 2)
         ->  Sort  (actual time=7.834..15.519 rows=13202 loops=11)
               ->  HashAggregate  (actual time=62.150..71.767 rows=13202 loops=1)
                     ->  Bitmap Heap Scan on tasks  (actual time=3.177..41.700 rows=18>>
                           Recheck Cond: (org_id = 2)
                           ->  Bitmap Index Scan on tasks_org_id_idx (actual time=2.50>>
                                 Index Cond: (org_id = 2)
 Total runtime: 906.146 ms
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Outline
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● PostgreSQL Approaches
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Postgres Approaches

● Benchmarking/performance

● Distrust vendors

● Sane appreciation of commodity hardware

● Culture of operations

● Release management
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Optimize Database > Basics

How to optimize PostgreSQL:

explain analyze

explain analyze

explain analyze

...
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Optimize Database > Cold DB Tip

EXPLAIN ANALYZE explains everything, but...

... run it also for the "cold" database state!

Example: complex query which works on 230 000 rows and

does 9 subselects / joins:

cold state: 28 sec, hot state: 2.42 sec

Database server restart doesn't help

Need to clear disk cache: 

sudo echo 3 | sudo tee /proc/sys/vm/drop_caches 

(Linux)
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Optimize Database > Shared Database

You're competing for memory cache on a shared server:

1. two databases with equal load share the cache
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Optimize Database > Shared Database

You're competing for memory cache on a shared server:

2. one of the databases gets more load and wins the cache
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Optimize Database > Shared Database

As a result, your database can always be in a "cold" state

and you read data from disk, not from memory!

complex query which works on 230 000 rows and

does 9 subselects / joins:

from disk: 28 sec, from memory: 2.42 sec

Solutions: 

optimize for IO/cold state

push down SQL conditions

sudo echo 3 | sudo tee /proc/sys/vm/drop_caches
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Optimize Database > Postgres Config

# How much memory we have to cache the database, RAM_FOR_DATABASE * 3/4

effective_cache_size = <%= ram_for_database.to_i * 3/4 %>MB

# Shared memory to hold data in RAM, RAM_FOR_DATABASE/4

shared_buffers = <%= ram_for_database.to_i / 3 %>MB

# Work memory for queries  (RAM_FOR_DATABASE/max_connections) ROUND DOWN 2^x

work_mem = <%= 2**(Math.log(ram_for_database.to_i / expected_max_active_connections.to_i)/Math.log(2)).floor %>MB

# Memory for vacuum, autovacuum, index creation, RAM/16 ROUND DOWN 2^x

maintenance_work_mem = <%= 2**(Math.log(ram_for_database.to_i / 16)/Math.log(2)).floor %>MB

# To ensure that we don't lose data, always fsync after commit

synchronous_commit = on

# Size of WAL on disk, recommended setting: 16

checkpoint_segments = 16

# WAL memory buffer

wal_buffers = 8MB

# Ensure autovacuum is always turned on

autovacuum = on

# Set the number of concurrent disk I/O operations that PostgreSQL expects can be executed simultaneously.

effective_io_concurrency = 4



Gleb Arshinov & Alex Dymo ● PostgreSQL as a secret weapon for high-performance Ruby on Rails applications ● PGCon 2010 57 / 58

Optimize Database > Postgres Config

Effect from better configuration:

Query Default 
Settings

Custom 
Settings

Effect

Aggregation on a 
large dataset

8205 ms 7685 ms 6%

Query with complex 
joins and subselects

229 ms 143 ms 38%
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Thanks!

Rails performance articles and more:
http://blog.pluron.com

Gleb Arshinov
CEO
gleb@pluron.com

Alexander Dymo
Director of Engineering
adymo@pluron.com
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