
How Enova Financial Uses
Postgres
Jim Nasby, Lead Database Architect

• Who are we?

• Some history

• Migration

• Where are we today? (The cheerleading
section)

• Cool stuff

• Q&A

2

Overview

Who are we?

According to our website...

“At Enova Financial, we provide reliable financial
options for everyday, hard-working people.

As a global financial resource for under-served
consumers, we operate a portfolio of
businesses that offer a variety of online credit
products and services in the United States,
United Kingdom, Australia and Canada.”

Who are we?

4

In simpler terms, every year we provide
over $1B of loans to people who are not
served by traditional financial institutions.

Founded in 2004
Launched in August 2005
Migrated from MySQL to Postgres in

August 2006 (MySQL free since Aug.
35th!)

Hired first dedicated database person Sept.
2007

Who are we?

5

Why does Postgres matter to
us?

Quite simply, Postgres is our lifeblood

• All of our external systems rely on
Postgres

• Most of our internal systems do as well
• During the day, downtime costs over

$100k/hour in lost revenue …
someone's annual salary!

Why does Postgres matter to us?

7

Postgres also gives us opportunities not
available from other databases:

• Easier feature additions
• Better open-source tool choices
• Unique capabilities

Why does Postgres matter to us?

8

The Migration Saga

“All databases suck, they just suck in
different ways.”
- Me, ca. 1999

The Migration Saga

10

• Default for Rails (at the time)
• “Everyone runs MySQL”
• MySQL did allow us to get everything up

and running, creating a fully functional
business

The Migration Saga – Why MySQL?

11

• Data integrity problems
• Scale
• MySQL made it too easy to do things

wrong
– Wrong table type
– Silent truncation

“I was approved for a $1200 loan, why did
you only give me $200?!!?!”

The Migration Saga – Why Change?

12

• Easy to pronounce name!
• MS-SQL didn't play well with Rails
• DB2 was fairly expensive
• Oracle was unfairly expensive

– $100k just to get started
– Would rather hire someone

The Migration Saga – Why Postgres?

13

• Getting started was frustrating due to
lack of experience

• Postgres is “unforgiving”
• Finding people to hire is difficult

The Migration Saga – Downsides

14

• Wrote “training wheels” (today you would
use mysqlcompat from pgFoundry)

• Minimized and controlled hand-written
SQL

– All SQL for the app was in 2 files
– All automated reports/queries were in

VCS

Migration took 2 months; launched 3
months after project start

The Migration Saga – Migration

15

• Methodical
• Automated (or at least repeatable)
• Get all SQL in one or two places
• Test all that SQL

The Migration Saga – Lessons

16

• Less raw SQL is good
• ORM and abstraction is good
• Foreign Keys are your friends
• Have your ERD available and teach

business people how to write SQL

Startup Lessons

17

• Do the best job you can in the time you
have. It's much easier to change things
early on

• Get as much expertise as you can
• A product that's out produces infinitely

more revenue than one that's not
• If you're successful, you will have scaling

problems, so be ready
• You will eventually get tied to your

technology

Startup Lessons

18

Where are we today?

Where are we today?

20

• US OLTP database is 1.3TB
• 640 transactions/second average
• Peak transaction rates of over 4000/sec
• Working set is between 100GB and

200GB
• 2 US londiste slave databases for

reporting
• Smaller setups for UK, Australia, Canada

and joint venture, as well as some
other businesses

Where are we today?

21

Throwing hardware at a problem can work:

Sept 2007 – 300GB, 4x dual-core, 32GB
Oct 2008 – 800GB, 4x 4-core, 96GB
Nov 2009 – 1TB, 4x 6-core, 192GB

Where are we today?

22

Open community means more options for
feature development

• Hot Standby
• Multi-master londiste
• Various small tools

Open community also means more
leverage for community efforts

• Londiste builds on some of Slony

Where are we today?

23

Cool Stuff

Cool Stuff

25

Cool Stuff

26

Customers have different accounts for
sending and receiving money:

• Bank
• Debit / Credit card
• Paycard

Cool Stuff - Inheritance

27

Some attributes are common across all
these different types of accounts

• account_id
• customer_id
• account_status_id

Cool Stuff - Inheritance

28

Some attributes are unique to specific
types of accounts

• routing_number / account_number
• card_token

Cool Stuff - Inheritance

29

How can you reconcile the different fields?

• Master table for common stuff referenced
by other tables for detailed stuff

SELECT …
 FROM customer_account c
 JOIN bank_account b

USING(account_id)

Cool Stuff - Inheritance

30

How can you reconcile the different fields?

• Lots of null fields
– customer_id NOT NULL
– routing_number NULL
– account_number NULL
– card_token NULL

Cool Stuff - Inheritance

31

Inheritance gives the best of both worlds!

CREATE TABLE bank_account(...)
 INHERITS(customer_account)
CREATE TABLE debit_card(...)
 INHERITS(customer_account)

Cool Stuff - Inheritance

32

• customer_account has common fields
• bank_account and debit_card have

common and specific fields
• Data is only stored once (in the child

table)
• Which table you select from depends on

what you're trying to do... is it
something generic or is it specific?

– List of customer accounts
– Send money to customer

Cool Stuff - Inheritance

33

My primary job responsibility is data quality.
But how do I ensure that?

• Code can have bugs
– QA isn't perfect
– Two checks are better than one

• Application developers don't think the
same way that database developers do

• Database developers often have a better
“big picture” view

Cool Stuff - Constraints

34

What do these constraints look like?

Some are simple
• CHECK Amount >= 0
• TRIGGER due_date > today

Some are more complex
• Valid status transitions
• Cross-table conditions

Cool Stuff - Constraints

35

Too much of a good thing is a bad thing!

• Does this constraint make sense to be in
the database? Does it have external
dependencies?

• How hard will it be to write in the
database?

• How general is the constraint?
• How critical is the condition we're

checking? (Risk)

Cool Stuff - Constraints

36

What happens when pl/pgsql doesn't cut it?

• Heavy string manipulation
• Access to the outside world
• $_GLOBAL
• Building queries around NEW and OLD

Switch to pl/Perl or another procedure
language

Cool Stuff - plPerl

37

PgQ is the queuing framework that
Londiste is built on

• Items are pulled out in batches, in order
of insertion

• Items can be marked for retry
• Interface is simple

Cool Stuff - PgQ

38

We're using PgQ to drive our “object
monitor”, which is used to update our
MS-SQL data warehouse

• All inserts and updates on specific
objects are logged to PgQ

• There is a set returning function that will
return all the rows in a table that have
been inserted or updated

Cool Stuff - PgQ

39

We typically release every 2 weeks; far too
often to maintain a master schema
document.

cnudump.pl: Dumps complete schema
from a production database, as well as
data from “seed” tables

tools.schema_patches: Table that tracks
what patches have been applied to a
database

Cool Stuff – Patch Framework

40

Patches can have an arbitrary number of
dependencies

-- patchdeps: some_older_patch
BEGIN;
SELECT tools.patch('new_patch');
…
COMMIT;

Cool Stuff – Patch Framework

41

YES YOU WANT UNIT TESTS!!!

But... maybe not to start. Typically, 50-70%
of the time spent creating new
functionality is devoted to unit test
creation.

Our unit tests don't use scaffolds; instead,
they use test data from previous tests.

Cool Stuff – Unit Tests

42

Code that writes code:

SELECT code.lookup_table_static(...);

Creates table, 2 indexes, 3 functions.

Simple tag replace system.

Cool Stuff – Metacode

43

We're looking for both DBAs and database
developers and have opportunities in
both Chicago and Austin, TX

http://enovafinancial.com/tech

recruiting@enovafinancial.com

We're hiring!

44

http://enovafinancial.com/tech

Questions?

jnasby@enovafinancial.com
jim@nasby.net

Q & A

45

mailto:jnasby@enovafinancial.com

	Title
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45

