
Exposing PostgreSQL Internals with User-Defined
Functions

Greg Smith

2ndQuadrant US

05/20/2010

Greg Smith Exposing PostgreSQL Internals with User-Defined Functions

About this presentation

I The master source for these slides is

http://projects.2ndquadrant.com

I You can also find a machine-usable version of the source code
to the later internals sample queries there

Greg Smith Exposing PostgreSQL Internals with User-Defined Functions

http://projects.2ndquadrant.com

Hacking on PostgreSQL

I The bigger the patch, the less likely the commit

Greg Smith Exposing PostgreSQL Internals with User-Defined Functions

User Defined Functions

I UDFs allow writing simple functions in C that access internals

I Many parts of the database are built as functions

I ”the standard internal function library is a rich source of
coding examples for user-defined C functions”

Greg Smith Exposing PostgreSQL Internals with User-Defined Functions

Existing Tutorials

I http://www.joeconway.com/web/guest

I ”Power PostgreSQL: Extending the Database with C” by Joe
Conway

I 100 slides; by page 21, examples are undecipherable

I http://neilconway.org/talks/hacking/

I ”Introduction to Hacking PostgreSQL” by Neil Conway and
Gavin Sherry

I ”Patch to add WHEN clause to the CREATE TRIGGER
statement”

I Adds new syntax and query execution

I 117 slides; expect to get lost no later than slide 33, ”Semantic
Analysis”

Greg Smith Exposing PostgreSQL Internals with User-Defined Functions

YOUR HEAD A SPLODE

Greg Smith Exposing PostgreSQL Internals with User-Defined Functions

Beginner Resources

I Cover basic setup like compiling

I http://www.postgresql.org/docs/current/static/xfunc-c.html

I

http://www.postgresql.org/docs/current/interactive/xtypes.html

I http://linuxgazette.net/139/peterson.html

I http://tldp.org/LDP/LGNET/142/peterson.html

Greg Smith Exposing PostgreSQL Internals with User-Defined Functions

Question #1

I What is a tuple?

I Wikipedia: ”a tuple represents the notion of an ordered list of
elements”

Greg Smith Exposing PostgreSQL Internals with User-Defined Functions

tuple=row

I Tuples are how rows are stored in memory, basically

Greg Smith Exposing PostgreSQL Internals with User-Defined Functions

Question #2

I What’s a Datum?

I Wikipedia: ”Datum is the singular form of data”

Greg Smith Exposing PostgreSQL Internals with User-Defined Functions

Simple Datum

I src/include/postgres.h

I A Datum can be a boolean, a character

I It can be an integer (holding up to at least 4 bytes), or some
other small integer type

I These are pass by value: the bytes allocated to the Datum
contain the data

Greg Smith Exposing PostgreSQL Internals with User-Defined Functions

Reference Datum

I Larger types of data are passed by reference

I Memory is allocated by palloc

I The Datum is a pointer to that data

I Over 8 bytes is definitely too big for a Datum

I Exact transition point depends on architecture and
PostgreSQL version

I Macros like DatumGetInt64 hide if you’re passing a 8 byte
integer by value (64-bit platform) or reference (32-bit)

I Similar macros to hide implementation of float and date/time
types

Greg Smith Exposing PostgreSQL Internals with User-Defined Functions

Strings

I C string: standard null-terminated string

#define DatumGetPointer(X) ((Pointer) (X))

#define PointerGetDatum(X) ((Datum) (X))

#define DatumGetCString(X) ((char *) DatumGetPointer(X))

#define CStringGetDatum(X) PointerGetDatum(X)

Greg Smith Exposing PostgreSQL Internals with User-Defined Functions

StringInfo

I String with some metadata

I Current length, maximum length

I Not necessarily a true string

I Can be a series of binary bytes

Greg Smith Exposing PostgreSQL Internals with User-Defined Functions

Which type of Datum do you have?

I No way to tell from the Datum itself

I Uses of data have an explicit type inferred by context they are
used in

I UDFs label each input and output parameter with an
associated type

Greg Smith Exposing PostgreSQL Internals with User-Defined Functions

Mapping function names into calls

I src/include/catalog/pg proc.h lists every function

I DATA(insert OID = 2077 (current setting PGNSP PGUID 12
1 0 0 f f f t f s 1 0 25 ”25” null null null
show config by name null null null));

I Need to read its source code to learn what all these fields
mean

I 25 = OID of text type

I Compiled into source code

I src/backend/catalog/postgres.bki

I Not fixed length; number of columns varies based on number
of parameters passed to function

Greg Smith Exposing PostgreSQL Internals with User-Defined Functions

Function call internals

I src/backend/utils/fmgr includes DirectFunctionCall code

I Datum DirectFunctionCall1(PGFunction func, Datum arg1)

I Datum DirectFunctionCall2(PGFunction func, Datum arg1,
Datum arg2)

I Up to DirectFunctionCall9 with takes arg1..arg9.

I See src/backend/utils/fmgr/README

I You can call functions from within your UDF using this
interface

Greg Smith Exposing PostgreSQL Internals with User-Defined Functions

Internal functions in the database

I Function ”library” is large

I Large enough that it’s overwhelming

I List in psql:

I df pg catalog.*

I Doesn’t include many of the really useful built-in functions

I List is at src/include/utils/builtins.h

I Everything is in pg proc.h

Greg Smith Exposing PostgreSQL Internals with User-Defined Functions

Decoding and encoding text in a function

Datum show config by name(PG FUNCTION ARGS) {

char *varname;

char *varval;

/* Get the GUC variable name */

varname = TextDatumGetCString(PG GETARG DATUM(0));

/* Get the value */

varval = GetConfigOptionByName(varname, NULL);

/* Convert to text */

PG RETURN TEXT P(cstring to text(varval));}

Greg Smith Exposing PostgreSQL Internals with User-Defined Functions

Sample hacking exercise

I ”On a big server where I allocated a lot of memory for
shared buffers, how can I tell how much has been used?”

I ”What is the memory working set size my fully cached
application with small tables?”

I Expose this information from the buffer cache internals

I Can solve now by using pg buffercache and counting buffers
used

I Results skewed by ring buffer implementation

I Interesting value despite limitations

Greg Smith Exposing PostgreSQL Internals with User-Defined Functions

Who has this data?

I Background writer code scans and needs this information:

I src/backend/storage/buffer/bufmgr.c

I List of free buffers part of the allocation strategy code:

I src/backend/storage/buffer/freelist.c

I Cache use is circular

I If more than a single pass has been made, you’ve used all of it
at some point

Greg Smith Exposing PostgreSQL Internals with User-Defined Functions

Game Plan

I Expose the hidden value in the low-level code

I Find a similar UDF to borrow code from

I Write a new UDF wrapper to expose the internals

I Add to the function catalog

Greg Smith Exposing PostgreSQL Internals with User-Defined Functions

src/backend/storage/buffer/freelist.c

int32 BuffersUsed(void) {

int used;

LWLockAcquire(BufFreelistLock, LW EXCLUSIVE);

if (StrategyControl->completePasses == 0)

used=StrategyControl->nextVictimBuffer;

else

used=NBuffers;

LWLockRelease(BufFreelistLock);

return (int32) used; }

Greg Smith Exposing PostgreSQL Internals with User-Defined Functions

src/backend/utils/adt/dbsize.c

Datum pg buffers used(PG FUNCTION ARGS) {

int used;

int64 size;

used=BuffersUsed();

size=used * BLCKSZ;

PG RETURN INT64(size); }

Greg Smith Exposing PostgreSQL Internals with User-Defined Functions

Catalog and headerinfo

I cd src/include/catalog/

I Run unused oids in that directory to find an unused value

I src/include/catalog/pg proc.h

I DATA(insert OID = 3822 (pg buffers used PGNSP PGUID
12 1 0 0 f f f t f v 0 0 20 ”” null null null null
pg buffers used null null null);

I DESCR(”bytes of shared buffers cache used”);

I src/include/storage/buf internals.h

I extern int64 BuffersUsed(void);

I src/include/utils/builtins.h

I extern Datum pg buffers used(PG FUNCTION ARGS);

Greg Smith Exposing PostgreSQL Internals with User-Defined Functions

Basic Debugging

I ERROR: invalid memory alloc request size 4294967293

I Wrong return type; allocated memory for my function didn’t
match

I dbsize.c:637: warning: implicit declaration of function
BuffersUsed

I Missing function declaration in the header files

I General development logging

I client min messages = debug2

I elog(DEBUG1,”Buffers used: %d”,used);

I elog(DEBUG1, ”Used buffer cache bytes: %lld”,size);

Greg Smith Exposing PostgreSQL Internals with User-Defined Functions

It runs!

I Function gets called and no compiler warnings

I Is the resulting data useful?

Greg Smith Exposing PostgreSQL Internals with User-Defined Functions

Oops!

I UDF doesn’t work at all!

I Data returned is always zero

I Your client process is not the background writer

I Process model in PostgreSQL is fairly complicated

Greg Smith Exposing PostgreSQL Internals with User-Defined Functions

Open Item Complexity

I Some features appear easy to build and obviously useful

I Those are done already

I What’s left on TODO list often contains hidden complexity
and gotchas

I Ask about your idea before writing a lot of code

I Keep the complexity as low as possible

Greg Smith Exposing PostgreSQL Internals with User-Defined Functions

Working example

I No substitute for a real commit to show a proven end result

I http://archives.postgresql.org/pgsql-committers/2010-
01/msg00288.php

I Adds pg table size and pg indexes size functions

I Shows catversion bump

I Even includes docs!

I

http://git.postgresql.org/gitweb?p=postgresql.git;a=commitdiff

I ;h=7c3ec9753dbedb00642f0fdfce90f9a11940df99

Greg Smith Exposing PostgreSQL Internals with User-Defined Functions

Closing Reminders

I Keep it small

I Read other people’s code

I Steal code from the server

I When in doubt, you can always read the source!

Greg Smith Exposing PostgreSQL Internals with User-Defined Functions

