
Skytools: PgQ
Queues and applications

Agenda

 PgQ basics
 Queues, producers and consumers
 New features in 3.0

 Skytools – toolset and scripting framework
 Custom consumers
 Replication toolset

 Managing the Skytools environment
 Installing
 Migrations and upgrades
 Monitoring

Database

What is PgQ?

 A queue implementation on PostgreSQL with a stored procedure
interface.

 Events are queued by producers to be subsequently processed by
consumers.

queueproducer consumerevent events

PgQ: what it's good for?

 Asynchronous messaging
 Batch processing
 Replication
 Distributed transactions

PgQ: Features

 Transactional. Events are created transactionally, can be coupled
with surrounding business logic.

 Efficient. Events are processed in batches which gives low per event
overhead.

 Flexible. No limits on the number of producers or consumers. Custom
event formats.

 Reliable. Events are stored in PostgreSQL database – this adds the
benefit of write ahead logging and crash recovery.

 Easy to use. Simple SQL interface, API-s for several languages.
 Open Source. No licensing fees, but occasionally you'll have to get

your hands dirty.

PgQ: example

queue:
user_events

producer
application:
web client function:

create_user

java consumer:
welcome email

C++ consumer:
user counter

python consumer:
londiste replica

 Database for registering user accounts.
 Events are generated by a pl/pgsql stored procedure.
 Consumers also talk to the queue through stored procedure interface.

queue:
notifications

UserDB

PgQ: at Skype

 Used everywhere where asynchronous data processing is needed.
 Hundreds of queues and consumers.
 Centrally monitored.

PgQ: brief history

 Started on 2006
 Inspired by ideas from Slony
 First application was Londiste replication
 Open source since 2007 as part of Skytools framework
 Version 3.0 in progress, alpha version out.

PgQ: glossary

 Event - atomic piece of data created by Producers. In PgQ event is one record in
one of tables that services that queue. PgQ guarantees that each event is seen at
least once but it is up to consumer to make sure that event is processed no more
than once if that is needed.

 Batch - PgQ is designed for efficiency and high throughput so events are grouped
into batches for bulk processing.

 Queue - Event are stored in queue tables i.e queues. Several producers can write
into same queue and several consumers can read from the queue. Events are kept
in queue until all the consumers have seen them.

 Producer - applications that pushes event into queue. Producer can be written in
any language that is able to run stored procedures in PostgreSQL.

 Consumer - application that reads events from queue. Consumers can be written in
any language that can interact with PostgreSQL.

PgQ: Queue

 Essentially a set of tables in a
PostgreSQL database.

 Default is to have 3 tables per queue,
these are rotated to efficiently purge
discarded events.

 Event is discarded when all the
consumers have processed it.

 Queues are accessible through stored
procedure API. Tools also available.

 There can be multiple queues in one
database.

 Any number of producers and
consumers to the queue.

userdb=# select * from pgq.queue;

-[RECORD 1]------------+---

queue_id | 1

queue_name | q1

queue_ntables | 3

queue_cur_table | 2

queue_data_pfx | pgq.event_1

...

userdb=# \dt pgq.event_1*

 List of relations

 Schema | Name | Type | Owner

--------+-----------+-------+---------

 pgq | event_1 | table | martinp

 pgq | event_1_0 | table | martinp

 pgq | event_1_1 | table | martinp

 pgq | event_1_2 | table | martinp

(4 rows)

PgQ: Queue API

 Creating and dropping queues
 pgq.create_queue(qname)
 pgq.drop_queue(qname)

 Queue information functions
 pgq.get_queue_info(qname)
 pgq.get_consumer_info(qname)
 pgq.current_event_table(qname)

 Managing consumers
 pgq.register_consumer(qname, cname)
 pgq.unregister_consumer(qname, cname)

PgQ: Event

 A record in the queue table.
 Internal fields used for event

processing.
 Payload data, with user defined

content.
 The content format is agreed

between producer and
consumer.

 Field names hint at their
intended usage.

userdb=# \d pgq.event_1

 Column | Type

-----------+--------------------------

 ev_id | bigint

 ev_time | timestamp with time zone

 ev_txid | bigint

 ev_owner | integer

 ev_retry | integer

 ev_type | text

 ev_data | text

 ev_extra1 | text

 ev_extra2 | text

 ev_extra3 | text

 ev_extra4 | text

Inherits: pgq.event_template

PgQ: Batch

 Events are grouped into batches for efficient processing.
 Consumers obtain events in batches.
 Batch size can be tuned to suit the application or network topology. For

example, we might want to use a larger batch size for processing over
wide area networks.

 Small batches have higher processing overhead, however too big
batches have their own disadvantages.

 Batches are prepared by separate process called the ticker.

PgQ: Ticker

 Is a daemon that periodically creates ticks on the queues. The tick is
essentially a position in the event stream.

 A batch is formed of events that are enqueued between two ticks.
 Without ticker there are no batches, without batches events cannot be

processed.
 Pausing the ticker for extended period will produce a huge batch,

consumers might not be able to cope with it.
 Ticker is also involved in miscellaneous housekeeping task, such as

vacuuming pgq tables, scheduling retry events and rotating queue
tables.

 Keep the ticker running!

PgQ: Consumer

 Subscribes to queue.
 Obtains events from queue by asking for a batch.
 Sees only events that have been produced after the subscription.
 Events are seen at least once – events don't get lost.
 Must have some sort of event tracking to process only once –

skytools has several implementations.
 If the event cannot be immediately processed it can be postponed for

retry processing (eg. some resource temporarily unavailable).

PgQ: Event processing

 Ask for next batch id:
pgq.next_batch(queue, consumer)

 Nothing to do if NULL returned – sleep
and try again.

 Ask the set of events to be returned:
pgq.get_batch_events(batch_id)

 Process the events. Note that the batch
can be empty if there were no events for
the period.

 Schedule the event for retry processing if
necessary:
pgq.event_retry(batch_id, ev_id, sec)

 Finalize the batch:
pgq.finish_batch(batch_id)

Event structure

 Column | Type

-----------+------------

 ev_id | bigint

 ev_time | timestamptz

 ev_txid | bigint

 ev_retry | integer

 ev_type | text

 ev_data | text

 ev_extra1 | text

 ev_extra2 | text

 ev_extra3 | text

 ev_extra4 | text

PgQ: Consumer status

 Can be obtained by calling pgq.get_consumer_info()
 Reports queue, consumer name, lag and last seen for all of the

consumers. Parameterized versions also available.
 lag is the age of the last finished batch.
 last seen is the elapsed time since consumer processed a batch.

userdb=# select * from pgq.get_consumer_info();
-[RECORD 1]-+----------------
queue_name | notifications
consumer_name | welcome_emailer
lag | 02:32:34.440654
last_seen | 00:00:00.019398
last_tick | 4785
current_batch | 4754
next_tick | 4786

PgQ: Event tracking

 PgQ guarantees that the consumer sees the event at least once. But
this could mean that the consumer could see the event more than
once.

 This happens if the consumer crashes in the middle of processing a
batch.

 Not a problem if the events are processed in the same database that
they are produced – just keep the processing in the same transaction.

 We need to address the case where events are processed outside a
database or in a remote database.

 Consumer needs to be able to keep track of which events are already
processed.

PgQ: Event tracking

 Event and batch tracking support is included in pgq_ext schema – this
is part of Skytools, but must be installed separately to target database.

 Use batch tracking when the whole batch is processed transactionally
pgq_ext.is_batch_done(consumer, batch_id)
pgq_ext.set_batch_done(consumer, batch_id)

 Per-event tracking is used to keep track of single events:
pgq_ext.is_event_done(consumer, batch_id, ev_id)
pgq_ext.set_event_done(consumer, batch_id, ev_id)

 Event tracking can be used to implement distributed transactions.

PgQ: distributed transactions

 Event tracking can be used to implement asynchronous distributed
transactions.

 We'll use batch tracking as an example.
 Skip the batch if it is already processed on target.
 Otherwise process the batch and mark as processed.
 Commit on target.
 Finish batch and commit on source.
 Skytools framework handles this automatically!

PgQ: Producer

 Anything that places events into queues.
 Event payload format agreed between producer and consumer.
 Basic usage via SQL API.

 pgq.insert_event(queue, ev_type, ev_data)

 Replication uses triggers for providing events.
 pgq.sqltriga(queue, options)
 pgq.logutriga(queue, options)

 Bulk load is also possible.

PgQ: sqltriga and logutriga

 Log triggers are used for enqueuing table change log entries. Typically
used for replication, but have other uses as well.

 Table structure is detected automatically - no messing around with
column definition lists.

 Arguments:
 SKIP – enqueue only, skip the actual DML operation. Used in

before-triggers.
 ignore=cols - The listed columns will be omitted from payload.

 pkey=cols - Defines a primary key for the table.

 backup – Add a copy of the original row to payload.
 Event format:

 pgq.sqltriga – partial SQL format used by Londiste replication.

 pgq.logutriga – URL encoded format.

PgQ: logutriga payload

 logutriga uses database specific URL encoding for payload data:
 column1=value1&column2=value2&column3&...

 column names and data values are URL encoded.
 NULL values are specified by omitting value and equal sign.

 Payload:
 ev_type – operation type: I/U/D plus primary key columns.

 ev_data – URL encoded row data

 ev_extra1 – Table name

 ev_extra2 – URL encoded row backup

PgQ: logutriga example

 We'll add a trigger to users table
that enqueues notification
events for new users.

 Add after-insert trigger that
executes logutriga with some
columns ignored.

 We could use before-insert
triggers with SKIP option to
implement queue only tables.

create table users (

user_id serial primary key,

username text unique,

password text not null,

email text,

date_created timestamp default now()

);

create trigger welcome_user_trg

after insert on users

for each row execute procedure

pgq.logutriga(

 'notifications',

 'ignore=password');

PgQ: logutriga in action

Insert statement

insert into users (

 username,

 password,

 email

) values (

 'bob',

 'secret',

 'bob@foo.bar'

);

Event data

ev_id | 26

ev_time | 2009-05-14 11:07:54.231954+02

ev_txid | 263834

ev_owner |

ev_retry |

ev_type | I:user_id

ev_data | user_id=1&username=bob&email=bob%40foo.bar

ev_extra1 | public.users

ev_extra2 |

ev_extra3 |

ev_extra4 |

mailto:'bob@foo.bar

Skytools 3: new features

 Cooperative consumer – distributing the load of a single consumer
between cooperating sub consumers.

 Cascading support – identical queue is maintained across nodes,
consumers can easily move between nodes.

 Per-database tickers replaced with a single pgqd daemon.
 qadmin utility for managing queues and consumers.

PgQ: Cooperative consumer

 Sometimes single consumer cannot keep up with the volume of
incoming events.

 Parallel consumers would help, but we need to somehow divide the
workload – avoid processing the same event twice.

 We need the consumers to work in cooperation!
 Skytools 3 introduces sub consumers for the purpose. These share the

workload of the master consumer in a cooperative manner.
 There are some differences in registration and batch handling, but they

look a lot like regular consumers:

pgq_coop.register_subconsumer(qname,cname,scname)
pgq_coop.unregister_subconsumer(qname,cname,scname,mode)
pgq_coop.next_batch(qname,cname,scname)
pgq_coop.finish_batch(batch_id)

PgQ: Cascading

 The cascade is a set of database
nodes and a queue that is distributed
between the nodes. Event and batch
numbers are kept identical!

 The cascade can be depicted as a
tree, where events created in the root
are propagated down the cascade to
other nodes.

 There can be only one root node, but
any number of branches or leaves.

 Leaf nodes are specific to replication.
They don't have a copy of the queue
and don't participate in event
propagation.

root branch 1

branch 2
leaf

q1 q1

q1

PgQ: Cascading

 Typical replication cascade would consist of a primary database -- the
root, replicated to standby database – a branch.

 We can easily switch the replication roles of root and branch nodes.
Consumers will continue as if nothing happened.

 On branch node failure we move its consumers to some surviving
node. Business as usual.

 On root node failure we promote some surviving branch to root and
reattach the consumers. In this scenario we have to deal with data
loss.

PgQ wrapup

 Producers produce events into queues.
 Ticker groups events into batches.
 Batches are served to consumers in FIFO order.
 Consumers can track processed events with pgq_ext.

Database

queue 2producer

tick

consumer

ticker

event batch of events

queue 1

tick

pgq_ext

event tracking

Skytools
Toolset and scripting framework

Skytools: introduction

 Set of applications for replication, batch processing and queue
management.

 Includes a Python scripting framework that greatly simplifies the
implementation of custom consumers.

 Written mostly in Python with some bits in C.
 PgQ is distributed as part of Skytools.
 Get it from http://pgfoundry.org/projects/skytools/
 We'll start by configuring the ticker.

http://pgfoundry.org/projects/skytools/

The Ticker

 The ticker prepares batches for the consumers.
 Also performs queue maintenance: table rotation, vacuuming, re-

queuing retry events.
 We'll need to configure it for each database that has queues.
 Skytools 3 includes a super-ticker that handles all the databases in a

PostgreSQL cluster.

pgqadm.py: configuration file

[pgqadm]
job_name = pgqadm_userdb
db = dbname=userdb

how often to run maintenance [minutes]
maint_delay_min = 5

how often to check for activity [secs]
loop_delay = 0.5

logfile = log/%(job_name)s.log
pidfile = pid/%(job_name)s.pid

 db – the name of the database
where queues are located.

 maint_delay_min – interval,
at which maintenance
commands are run.

 loop_delay – interval, at which
the ticker wakes up to check for
work.

pgqadm.py: installing and starting

$ pgqadm.py pgqadm_userdb.ini install
2009-05-13 12:37:17,913 19376 INFO plpgsql is installed
2009-05-13 12:37:17,936 19376 INFO txid_current_snapshot is installed
2009-05-13 12:37:17,936 19376 INFO Installing pgq
2009-05-13 12:37:17,984 19376 INFO Reading from /usr/local/share/skytools/pgq.sql

$ pgqadm.py pgqadm_userdb.ini ticker -d
...
$ tail log/pgqadm_userdb.log
2009-05-13 12:45:42,572 17184 INFO {ticks: 1}
2009-05-13 12:45:42,586 17184 INFO {maint_duration: 0.0229749679565}
2009-05-13 12:50:42,639 17184 INFO {maint_duration: 0.0530850887299}
2009-05-13 12:50:42,719 17184 INFO {ticks: 9}

 Install pgq schema
 Start the ticker in background
 Repeat the process for all databases with queues.

pgqadm.py: command line

 pgqadm.py provides additional functionality besides the ticker:
 creating and configuring queues
 managing consumers
 querying status

 Convenient front end for the PgQ SQL API.

Usage: pgqadm.py [options] INI CMD [subcmd args]

commands:
 ticker start ticking & maintenance process

 status show overview of queue health

 install install code into db
 create QNAME create queue
 drop QNAME drop queue
 register QNAME CONS install code into db
 unregister QNAME CONS install code into db
 config QNAME [VAR=VAL] show or change queue config

pgqadm.py: creating queues and consumers

$ pgqadm.py pgqadm_userdb.ini create notifications
2009-05-12 17:53:34,726 12610 INFO Creating queue: notifications

$ pgqadm.py pgqadm_userdb.ini register notifications welcome_consumer
2009-05-12 17:53:47,808 12632 INFO Registering consumer welcome_consumer on queue
notifications

$ pgqadm.py pgqadm_userdb.ini status
Postgres version: 8.3.7 PgQ version: 2.1.8

Event queue Rotation Ticker TLag
--
notifications 3/7200s 500/3s/60s 1s
--
Consumer Lag LastSeen
--
notifications:
 welcome_consumer 116s 103s
--

 We'll create a queue called notifications and subscribe a consumer
welcome_consumer to it.

pgqadm.py: setting queue parameters

 Per-queue tuning options:
 ticker_max_lag – Max time between ticks.

 ticker_idle_period – Tick at interval, if no events.

 ticker_max_count – Tick, if number of events exceeds this. Can be used to
tune batch sizes.

 rotation_period – How often to rotate queue tables, balance between disk
space and event history.

$ pgqadm.py pgqadm_userdb.ini config notifications
notifications
 ticker_max_lag = 3
 ticker_idle_period = 60
 rotation_period = 7200
 ticker_max_count = 500

$ pgqadm.py pgqadm_userdb.ini config notifications ticker_max_count=1000
Change queue notifications config to: queue_ticker_max_count='1000'

pgqadm.py: summary

 Runs the ticker.
 Performs queue maintenance.
 Provides command line interface for managing the queues and

consumers.

Python framework

 The framework handles database connection management, logging,
statistics, quoting, daemonization etc.

 Most of the Skytools applications are implemented by extending
DBScript - a Python class providing the infrastructure needed for
typical database batch job.

 Several base classes available for implementing custom consumer
applications.

DBScript: configuration

 Most DBScripts have a configuration file that defines the parameters
for the script – source database, queue name, log file location etc.

 Python ConfigParser format.
 Common options:

 job_name – Identifies the current script

 loop_delay – how often to check for work, seconds.

 pidfile – pid file for daemons

 logfile – log file name

 log_size – size of individual log files.

 log_count – number of log files kept.

 use_skylog – override logging configuration by skylog.ini

DBScript: command line

 Standard invocation is:
script.py configuration.ini [options]

 Common options:
 -h, --help – Show usage for the particular script.

 -v, --verbose – Make the script more verbose.

 -q, --quiet – Log only errors and warnings.

 -d, --daemon – Run the script in background.

 -r, --reload – Reload a running application,

 -s, --stop – Wait for work loop to finish, then stop.

 -k, --kill – Terminate the application immediately.

Custom consumer

 We'll write a small queue application called welcome_consumer.
 The application reads events from a queue and prints out event

payload if type matches “welcome”.
 The application base class extends Consumer which in turn extends

DBScript.
 Consumer implements the pgq consumer event loop. We only need to

add the bits that do the event handling.
 All of the regular DBScript configuration and command options apply.

Custom consumer: configuration

 pgq_queue_name – name of
the queue the consumer is
subscribing to.

 pgq_consumer_id – name of
the consumer, defaults to
job_name if not present.

[welcome_app]
job_name = welcome_consumer

src_db = dbname=userdb

pgq_queue_name = notifications
pgq_consumer_id = %(job_name)s

logfile = log/%(job_name)s.log
pidfile = pid/%(job_name)s.pid

Custom consumer: Python code

import sys, pgq, skytools

class WelcomeConsumer(pgq.Consumer):
 def __init__(self, args):
 pgq.Consumer.__init__(self,
 "welcome_app", "src_db", args)

 def process_event(self, src_db, ev):
 if ev.ev_type == 'welcome':
 self.log.info('Welcome %s!' % ev.ev_data)
 ev.tag_done()

if __name__ == '__main__':
 script = WelcomeConsumer(sys.argv[1:])
 script.start()

Event structure

 Column | Type

-----------+------------
 ev_id | bigint
 ev_time | timestamptz
 ev_txid | bigint
 ev_retry | integer
 ev_type | text
 ev_data | text
 ev_extra1 | text
 ev_extra2 | text
 ev_extra3 | text
 ev_extra4 | text

Custom consumer: event processing

 The process_event() function is called for each event in a batch.
If there are no batches the script sleeps loop_delay seconds and
retries.

 A DB API connection to the queue database is passed in src_db,
the transaction will be committed after successfully returning from
process_event().

 On failure, the transaction will be rolled back, active batch will be
reprocessed on next iteration.

 We need to call tag_done() for the processed events – otherwise
they'll be scheduled for retry processing.

...
def process_event(self, src_db, ev):
 if ev.ev_type == 'welcome':
 self.log.info('Welcome %s!' % ev.ev_data)
 ev.tag_done()
...

Custom consumer: running it

 The consumer must be subscribed to the queue before events can be
processed. In Skytools 2 this happens automatically.

 Skytools 3 requires explicit subscription, provides a –register switch
for the purpose.

 For each processed batch the script logs the number of events and
processing duration.

$ python welcome_consumer.py welcome_consumer.ini
2009-05-13 11:50:27,700 4318 INFO {count: 0, duration: 0.0322341918945}
2009-05-13 11:50:27,705 4318 INFO {count: 0, duration: 0.00421690940857}
2009-05-13 11:51:13,720 4318 INFO {count: 0, duration: 0.0121331214905}

Custom consumer: event processing

userdb# select pgq.insert_event('notifications', 'welcome', 'Custom Consumer');
userdb# select pgq.insert_event('notifications', 'irrelevant', 'Another Event');
...
2009-05-13 12:19:11,563 6884 INFO {count: 0, duration: 0.00770711898804}
2009-05-13 12:19:14,583 6884 INFO {count: 0, duration: 0.0210809707642}
2009-05-13 12:19:25,591 6884 INFO Welcome Custom Consumer!
2009-05-13 12:19:25,595 6884 INFO {count: 2, duration: 0.012876033783}
2009-05-13 12:19:28,608 6884 INFO {count: 0, duration: 0.0131230354309}

 So far our consumer hasn't seen any events.
 We'll use pgq.insert_event() stored procedure to feed some test

events into the queue.
 In it's simplest form it takes queue name, event type and payload as

arguments.

Custom consumer: event tracking

 Extend RemoteConsumer to add batch tracking support.
 pgq_ext must be installed on the target database.
 We'll use a simple counter application as an example.
 This actually implements distributed transactions.

class UserCounter(pgq.RemoteConsumer):
 def __init__(self, args):
 pgq.RemoteConsumer.__init__(self, "user_counter", "src_db", "dst_db", args)

 def process_remote_batch(self, db, batch_id, event_list, dst_db):
 for ev in event_list:
 ev.tag_done()
 cur = dst_db.cursor()
 cur.execute("update user_count set n = n + %s" % len(event_list))

Custom consumer: wrapup

 We have just implemented some simple PgQ consumers.
 Extend Consumer class for simple consumers. Advanced consumer

base classes also available.
 RemoteConsumer and SerialConsumer – provide batch tracking,

these are used for processing events in remote databases.
 CascadedConsumer adds cascading support (Skytools 3).

userdb

 notifications

pgq.insert_event

tick

welcome consumer

ticker

event
batch of events

Replication toolset

 Replication tools built on top of PgQ:
 londiste – replication
 table dispatcher – archiving and partitioning
 queue mover – copy events from one queue to another
 queue splitter – split queues into queues

 Changelog triggers are used for capturing table data changes.
 Replication process is just another PgQ consumer.

Londiste

 Master/slave replication system implemented on top of PgQ.
 Uses sqltriga/logtriga to capture table changes on the master.
 PgQ consumer replays the captured events on the slave.
 One master can feed several slaves.
 Slaves can be masters to other slaves.

queue

source table
sqltriga

tick

londiste worker

ticker

changelog

batch of events

event tracking

target table

londiste
completed

DML

Master Slave

Londiste: setting up

 Prepare the configuration file – source and
target databases, queue name.

 Run londiste install commands for
provider and subscriber.

 Start the replication process – consume
from master and replay on slave.

 The replay process can run anywhere, as
long as it can connect to both databases.

 Add tables to replication.
 Initial copy is started, tables are usable on

slave after it finishes.

[londiste]

job_name = l_u_to_f

provider_db = dbname=userdb

subscriber_db = dbname=foodb

pgq_queue_name = user_events

logfile = log/%(job_name)s.log

pidfile = pid/%(job_name)s.pid

Londiste: demonstration

$ londiste.py londiste_userdb_to_foodb.ini provider install
2009-05-14 15:12:42,714 27716 INFO plpgsql is installed
2009-05-14 15:12:42,716 27716 INFO txid_current_snapshot is installed
2009-05-14 15:12:42,716 27716 INFO pgq is installed
2009-05-14 15:12:42,717 27716 INFO Installing londiste
2009-05-14 15:12:42,717 27716 INFO Reading from /usr/local/share/skytools/londiste.sql
$ londiste.py londiste_userdb_to_foodb.ini subscriber install
2009-05-14 15:12:48,887 27728 INFO plpgsql is installed
2009-05-14 15:12:48,889 27728 INFO Installing londiste
2009-05-14 15:12:48,889 27728 INFO Reading from /usr/local/share/skytools/londiste.sql
$ londiste.py londiste_userdb_to_foodb.ini replay -d
$ pg_dump -t users -s userdb | psql foodb
$ londiste.py londiste_userdb_to_foodb.ini provider add users
2009-05-14 15:15:19,730 27959 INFO Adding public.users
$ londiste.py londiste_userdb_to_foodb.ini subscriber add users
2009-05-14 15:16:29,845 28082 INFO Checking public.users
2009-05-14 15:16:29,888 28082 INFO Adding public.users
$ tail log/londiste_userdb_to_foodb.log
2009-05-14 15:44:47,293 28122 INFO {count: 0, ignored: 0, duration: 0.0210900306702}
2009-05-14 15:45:47,309 28122 INFO {count: 0, ignored: 0, duration: 0.0170979499817}

Table dispatcher

 Archiving and partitioning tool.
 Customizable table structure.
 Automatically creates partitions based on user specified conditions.
 Does not handle updates.

queue

source table
logutriga

tick

table dispatcher

ticker

insert changelog

batch of events

event tracking

target table
partitions

pgq_ext
completed_tick

DML

Master Slave

Table dispatcher: setting up

 Add logutriga to the source table, or
reuse an existing trigger.

 Create the base table structure on
target. Individual table partitions will
be inherited from that.

 Prepare the configuration file which
specifies the source queue, target
table and partitioning options.

userdb# \d users
...
Triggers:
welcome_user_trg AFTER INSERT ON users
FOR EACH ROW EXECUTE PROCEDURE
 pgq.logutriga('notifications',
 'ignore=password')

archivedb# \d user_history
 Column | Type
--------------+----------
 username | text
 date_created | timestamp

Table dispatcher: configuration

[table_dispatcher]
job_name = user_archiver

src_db = dbname=userdb
dst_db = dbname=archivedb

pgq_queue_name = notifications

logfile = log/%(job_name)s.log
pidfile = pid/%(job_name)s.pid

dest_table = user_history
fields = username, date_created
part_field = date_created
part_method = daily

part_template =
 create table _DEST_TABLE ()
 inherits (user_history);
 grant select on _DEST_TABLE
 to reporting;

 dest_table – Base table for
partitions.

 fields – select the columns to
include, or use * for all.

 part_field – the column used for
partitioning.

 part_method – either daily or
monthly.

 part_template – SQL template
for creating the partitions.

Table dispatcher: demonstration

$ table_dispatcher.py td_userdb_to_archivedb.ini
2009-05-18 11:05:14,370 10625 INFO {count: 0, duration: 0.0341429710388}
2009-05-18 11:05:14,379 10625 INFO {count: 1, duration: 0.00861620903015}
2009-05-18 11:05:15,394 10625 INFO {count: 0, duration: 0.0151319503784}
...

$ psql archivedb
archivedb# \dt user_history*
 List of relations
 Schema | Name | Type | Owner
--------+-------------------------+-------+---------
 public | user_history | table | martinp
 public | user_history_2009_05_17 | table | martinp
 public | user_history_2009_05_18 | table | martinp
(3 rows)

Queue mover

 Transports events from one queue to another.
 Useful for performing queue migrations.
 Consolidating queues from partitioned databases.

source
queue

tick

queue mover

ticker

batch of events

event tracking

pgq_ext
completed_tick

events

Master Slave

target
queue

Queue splitter

 Transports events from one queue to several target queues.
 ev_extra1 field is used to determine the target queue.

logutriga automatically puts table name there.
 Useful for transporting events for batch processing.

source
queue

tick

queue splitter

ticker

batch of events

event tracking

pgq_ext
completed_tick

events

Source Target

target
queue

target
queue

target
queue

events

events

logutriga()

event

Replication tools: wrapup

 Replication tools are ordinary PgQ consumers implemented with
Skytools framework.

 On master database changelog events are enqueued through
sqltriga/logutriga.

 On slave the DML statements are reconstructed and replayed.
 Event tracking is used to ensure that duplicate batches are not

processed.

Skytools
Managing the Skytools environment

Skytools: getting and installing

 Prerequisites:
 Python
 psycopg2

 If you are lucky:
 apt-get install skytools
 http://yum.pgsqlrpms.org

 Building from source
 Get it from http://pgfoundry.org/projects/skytools/
 Needs PostgreSQL development headers and libraries
 untar, configure, make install

 For the adventurous, Skytools3:
 http://github.com/markokr/skytools-dev

http://yum.pgsqlrpms.org/
http://pgfoundry.org/projects/skytools/
http://github.com/markokr/skytools-dev

Skytools2: installing from tarball

 Get the latest tarball from pgfoundry.
 Dependencies:

 C compiler and make
 PostgreSQL development headers and libraries
 Python development package

 Makefile can also generate Debian packages.

$ tar zxf skytools-2.1.9.tar.gz
$ cd skytools-2.1.9
$./configure –prefix=/usr/local
$ make
$ sudo make install
... or ...
$ make deb83

Skytools3: building from Git

 Main repository is on github, clone from there or create your own fork.
 Adds additional dependencies:

 asciidoc
 xmlto
 autoconf

$ git clone git://github.com/markokr/skytools-dev.git
$ cd skytools-dev
$ git submodule init
$ git submodule update
$ make boot
$./configure –prefix=/usr/local --with-asciidoc
$ make

Skytools: migrations and upgrades

 Upgrading a database with PgQ – pretty much straightforward, but has
some additional steps.

 Migrating consumers from one database to another – to take some
load off the primary server or to prepare for database migrations.

 Migrating whole databases.

Upgrading a PgQ database

1. pg_dump the database, shutdown database, stop tickers and
consumers.

2. Run pg_resetxlog -n to determine the current epoch (extract from
Latest checkpoint's NextXID).

3. Upgrade PostgreSQL binaries AND skytools modules.
4. Run pg_resetxlog -e to increase the epoch value. This is needed to

enable pgq to correctly interpret stored txid values.

Alternatively, if you are using the schema based txid (prior to 8.3), start
the cluster and update the epoch in txid schema:

UPDATE txid.epoch SET epoch = epoch + 1,
last_value = (get_current_txid() & 4294967295);

5. Start the database, import dump file.
6. Start the ticker and consumers.

Skytools2: migrating consumers

1. Set up a queue mover to replicate the queue to new database, we will
move the consumer subscriptions to the queue replica.

2. Stop the ticker on primary database - no more new batches will be
prepared. After processing the pending batches, the consumers will
stop at identical positions on the queue.

3. We can now subscribe the consumers to the replicated queue. Note
that we need to reset the event tracking for the migrated consumers.
Replication tools have --reset option for the purpose.

4. Start the ticker. Queue mover will continue queue replication,
consumers on the new queue will continue where they left off.

5. If all is good, unregister the consumers from the old master.

Skytools3: migrating consumers

 Cascaded queues are kept identical across nodes - no need to set up
explicit queue movers.

 Consumers that extend CascadedConsumer can be switched by
simply running change-provider command of the set admin tool.

 No need to mess around with tickers and configuration files.
 The core features are complete, some development needed.

Skytools2: migrating databases

1. Create the database structure on the new host. Omit pgq, pgq_ext and
londiste schemas – better to reinstall those later.

2. Replicate the database to the new host using londiste.
3. Create the queues and changelog triggers on the new database.
4. Pay special attention to applications that use stored procedures to

enqueue events - maybe a queue mover is needed?
5. Migrate the consumers to the new database.
6. Make the primary database read-only and wait for londiste replication

to catch up.
7. Redirect the applications to the new database.

Skytools3: migrating databases

 Cascading can be used to greatly simplify the migration process.
 The target database should be a branch node of the cascade.
 Migration is then performed by stopping the applications, running a

londiste switchover command and redirecting the applications to the
new database.

 Switchover will switch the roles of the root and branch, consumers
needn't be aware that something changed.

Skytools: monitoring consumers

 We need to ensure that all our consumers are running happily.
 The best indicator for this is the consumer lag – if a consumer is

lagging, it is not processing events adequately.
 pgqadm.py status command or pgq.get_consumer_info() SQL

function can be used to determine the lag.
 In the example welcome_consumer hasn't processed anything in 6

days – probably not running at all.

select queue_name, consumer_name, lag, last_seen from pgq.get_consumer_info();

 queue_name | consumer_name | lag | last_seen
---------------+--------------------+-----------+----------
 notifications | user_counter | 00:00:43 | 00:00:00
 notifications | welcome_consumer | 6 days | 6 days

Skytools: logging

 Skytools applications use Python logging module which can be used to
forward the log and statistics messages to a central location.

 Just set use_skylog = 1 in the configuration and configure the log
handlers in skylog.ini

 Use syslog or write your own log handler. Examples are provided for
sending the log over UDP or to a PostgreSQL database via stored
procedure calls (see skylog.py).

 At Skype, we use the logging facilities to populate a configuration
management database and feed error messages to Nagios.

Skytools: links

 PgFoundry project page
http://pgfoundry.org/projects/skytools

 PgQ tutorial
http://wiki.postgresql.org/wiki/PGQ_Tutorial

 Tool documentation
http://skytools.projects.postgresql.org/doc/

 PHP consumer
http://pgsql.tapoueh.org/pgq/pgq-php/

 Github repository for Skytools3
http://github.com/markokr/skytools-dev/tree/master

http://pgfoundry.org/projects/skytools
http://wiki.postgresql.org/wiki/PGQ_Tutorial
http://skytools.projects.postgresql.org/doc/
http://pgsql.tapoueh.org/pgq/pgq-php/
http://github.com/markokr/skytools-dev/tree/master

Questions?

	Presentation title here.
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75

