
PostgreSQL & Temporal Data
Christopher Browne

Afilias Canada

PGCon 2009

1

Agenda

What kind of temporal data do we need?

What data types does PostgreSQL offer?

Temporality Representations

Time Travel, Transaction Tables, Serial Numbers

2

What kind of temporal data
do we need?

Databases store facts about objects and events

Interesting times include

When an event took place

When the event was recorded

When someone was charged for the event

3

More Interesting Times

When you start recognizing income on the event

When you end recognizing income on the event

When an object state begins

When an object state ends

4

PostgreSQL Data Types

Date
Problem: Pre-assumes evaluation of cutoff between
days!

Time with/without timezone
Problem: Comparisons of Date+Time turn into hideous
SQL

Timestamp
Combines Date + Time

5

PostgreSQL Data Types

Timestamp with time zone
Allows collecting time in ‘local times’ and recognizing
that

Interval
Difference between two times/timestamps
Very useful for indicating duration of time ranges

6

Operators

time/timestamp/date +|- interval = time/timestamp/date

timestamp - timestamp = interval
(likewise for the others)

timestamp <, <=, >, >= timestamp

A BETWEEN B AND C
A >= B and A <= C

7

Variations on “when is it???”

NOW(), transaction_timestamp, current_timestamp
all providing start of transaction

statement_timestamp

clock_timestamp

transaction commit timestamp - not available!

8

Commit Timestamp

Useful representation: Tables record (serverID, ctid)

At COMMIT time, if the transaction has used this, then insert (serverID, ctid,
clock_timestamp) into timestamp table

Eliminates Slony-I “SYNC” thread & simplifies queries

Helpful for multimaster replication strategies

Adds a table full of timestamps that needs cleansing :-(

9

PGTemporal

PgFoundry project implementing
(timestamp,timestamp) type + all logical operations

First aspect: Supports inclusive & exclusive periods

[From, To], (From, To), [From, To), (From, To]

[and] indicate “inclusive” periods beginning and
ending at the specified moment

(and) indicate exclusive periods excluding endpoints

10

Inclusion & Exclusion

Commonly, [From, To) is the ideal representation

Today’s data easily characterized as
[2009-05-22,2009-05-23)

This month’s period: [2009-05-01, 2009-06-01)

Successive periods do not overlap
[2009-04-01,2009-05-01),[2009-05-01,2009-06-01)

Note that SQL “BETWEEN” is equivalent to [From,To]

11

A Veritable Panoply of
Operators

length(p), first(p), last(p), prior(p), next(p)

contains(p, t), contains(p1, p2), contained_by(t, p),
contained_by(p1,p2), overlaps(p1,p2), adjacent(p1,p2),
overleft(p1,p2), overright(p1,p2), is_empty(p), equals
(p1,p2), nequals(p1,p2), before(p1,p2), after(p1,p2)

period(t), period(t1,t2), empty_period()

period_intersect(p1,p2), period_union(p1,p2), minus
(p1,p2)

12

Core????

Should PGTemporal be in core?

What would be needed for it to head in?

13

Classical SQL Temporality

Developing Time-Oriented Database Applications in
SQL - Richard Snodgrass, available freely as PDF

Uses periods much as in PGTemporal

Standard SQL does not support periods, alas!

Considerable attention to handling insertion of past/
future history

14

Foreign Key Challenges

Nontemporal tables: No temporality, No problem!

Referencing table is temporal, referenced table isn’t: No
problem!

Referenced table is temporal Troublesome!

Referential integrity may be violated simply via
passage of time

Referenced & referencing tables may vary
independently!

15

PostgreSQL Time Travel

Take a stateful table

Add triggers to capture (From,To) timestamps on
INSERT, UPDATE, DELETE

Sadly, this breaks if you require referential integrity
constraints pointing to this table :-(

16

Time Travel Actions

On INSERT

(NEW.From, NEW.To) = (NOW(), NULL)

On DELETE

(OLD.From, OLD.To) = (PrevValue, NOW())

On UPDATE

Transforms into DELETE old, INSERT new

17

Pulling Specific State

Current state:
select * from table where endtime is NULL

State at a particular time: Set Returning Function
select * from table_at_time(ts)

Pulls tuples effective at that time

starttime <= ts

endtime is null or endtime >= ts

18

Explicit Temporal Tables

Accept that it’s temporal to begin with

Not just a way to get “history for free”

Enables Science Fiction: Declaring future state!

At 9am next Wednesday, state will change

Eliminates need for “batch jobs”

May need to pre-record future-dated events!

19

Science Fiction....

20

Problems

Foreign key references into temporal tables are
problematic

Overlap?

Reference disappearing?

Fixing problems requires “fabricating a historical story”
not just “fixing the state”

21

Temporality via Tx References

create table transactions (
 tx_id integer primary key default nextval(‘tx_seq’),
 whodunnit integer not null references users(user_id),
 and_when timestamptz not null default NOW());

create table slightly_temporal_object (
 object_id serial primary key,
 tx_id integer not null default currval(‘tx_seq’)
 references transactions(tx_id));

22

Getting More Temporal - I

Add ON UPDATE trigger that updates tx_id to currval
(‘tx_seq’)

23

More Temporal: History!

Create a “past history” table

Similar schema, but drop all data validation

Add end_tx

UPDATE/DELETE throw obsolete tuples into the
“past history table”

Data validation dropped because validation can change
over time

24

Serial Number Temporality

Used in DNS

Sets of updates grouped together temporally

A “bump of serial number” indicates common
publishing at a common point in time

25

Object Value Zone From To

ns1.abc.org 10.2.3.1 org 1 3

ns1.abc.org 10.2.3.2 org 3

ns2.abc.org 10.2.2.1 org 2

ns3.abc.org 10.9.1.2 org 1 3

ns1.abc.org 10.2.3.1 info 17 19

ns2.abc.org 10.2.3.2 info 14 18

ns2.abc.org 10.9.1.2 info 18

ns3.abc.org 141.2.3.4 info 19

26

Zone Representation Merits

It’s fast. We extract multimillion record zones in
minutes

Arbitrary ability to roll back...

Nicely supports DNS AXFR/IXFR operations

Each serial # represents a sort of “Logical Commit”

27

Further Merits of this

Rename “zone” to “module” and this is nice for
configuration

We already know it supports large amounts of data
efficiently

Configuration is smaller (we hope!)

28

Demerits of zone-like structure

No way to specify a point of time in the future

Serial numbers are intended to just keep rolling along

HOWEVER....

With complex apps & configuration, fancier temporality
looks like a misfeature

29

Conclusions

3 ways to represent temporal information

Timestamps, Transaction IDs, Serial numbers

PostgreSQL changes possible

Should PGtemporal be added to “core”?

Should we try to have temporal foreign key
functionality in core?

30

