PostgreSQL & Temporal Data

Christopher:Browne

Aflllas:Ganada
PECon2009

Agenda

= \Vhat kind of temporal data do-we need?
x \Vhat data types does PostgreSQL offer?

® [emporality Representations

» [ime Travel, Transaction Tables, Serial Numbers

What kind of temporal data
do we need?

® Databases store facts about objects and events
® |nteresting times include
® \\Vhen an event took place

x \\'nen the event was recorded

® \\V\hen someone was charged for the event

More Interesting |iImes

® \\Vhen you start recognizing income on-the event
x \Vhen you end recognizing income on the event

® \Vhen an object state begins

® \\Vhen an object state ends

PostgreSQL Data Types

x Date
Problem: Pre-assumes evaluation of cutoff between

days!

® [ime with/without timezone
Problem: Comparisons of Date+Time turn into hideous

SQL

® [imestamp
Combines Date + Time

PostgreSQL Data Types

® [|mestamp with time zone
Allows collecting time:in:‘local times’ and recognizing
that

= |nterval
Difference between two times/timestamps
Very usetul for indicating duration of time ranges

Operators

x time/timestamp/date +|- interval = time/timestamp/date

® timestamp - timestamp = interval
(likewise for the others)

® timestamp <, <=, >, >= timestamp

x A BETWEEN B AND G
A>=Band A<=0C

Variations on “when Is it2?27?2”

x NOW(), transaction_timestamp; current. timestamp
all providing start of transaction

® statement timestamp

® clock timestamp

® transaction commit timestamp - not available!

Commit Timestamp

» Useful representation: Tables record (serverlD; ctid)

x At COMMIT time, if the transaction has used this, then insert (serverlD, ctid,
clock_timestamp) into timestamp table

» Eliminates Slony-l “SYNC” thread & simplifies queries

x Helpful for multimaster replication strategies

» Adds a table full of timestamps that needs cleansing :-(

PG lemporal

®x PgFoundry project implementing
(timestamp,timestamp) type + all logical operations

x [irst aspect: Supports inclusive & exclusive periods

®x [From, To], (From, To), [From; To), (From, To |

x [and | indicate “inclusive’ periods beginning and
ending at the specified moment

® (and) indicate exclusive periods excluding endpoints

INclusion & Exclusion

x Commonly, [From, T0) Is the ideal representation

x [oday’s data easily characterized as
[2009-05-22,2009-05-23)

x [his month’s period: [2009-05-01, 2009-06-01)

® SUCCESSIVE PErods ado not overlap
[2009-04-01,2009-05-01),[2009-05-01,2009-06-01)

x Note that SQL “BETWEEN” is equivalent to [From, To]

A Veritable Panoply of
Operators

x |length(p), first(p), last(p), prior(p), next(p)

x contains(p, t), contains(pl; p2), contained_by(t, p),
contained_by(p1,p2), overlaps(pl;,p2), adjacent(p1,p2),
overleft(p1,p2), overrght(pl,p2), is_empty(p), equals
(01,p2), hequals(pt,p2), before(pl;p2), after(p1,p2)

x period(t), period(tl;t2), empty. period()

® period_intersect(p1,p2), period_union(p1,p2), MINUS
(01,p2)

Core??7?7

x Should PGlemporal be in core?

» \\hat would be needed for it to head In’

Classical SQL Temporality

x Developing Time-Oriented Database Applications in
SQL - Richard Snodgrass, available freely as PDF

® [Jses periods much-as in:PGlemporal

x Standard SQL does not support periods, alas!

x Considerable attention to handling insertion of past/
future history

Foreign Key Challenges

® Nontemporal tables: No temporality, No problem!

® Referencing table is temporal; reterenced table isn’t: No
oroblem!

» Referenced table s temporal lroublesome!

x Referential integrity may be violated simply via
passage of time

x Referenced & referencing tables may vary
iIndependently!

PostgreSQL Time Travel

n [ake a stateful table

x Add triggers to capture (From; o) timestamps on
INSERT, UPDATE, DELETE

x Sadly, this breaks If you require referential integrity
constraints pointing to this table :-(

Time lravel Actions

x On INSERT

x (NEW.From, NEW.To) = (NOW(), NULL)
x On DELETE

x (OLD.From, OLD.To) = (PrevValue, NOW())
x On UPDATE

» [ransforms into DELETE old, INSERT new

Pulling Specific State

x Current state:
select * from table where endtime i1s NULL

x State at a particular time: Set Returning Function
select * from table at time(ts)

® Pulls tuples effective at that time

® Starttime <= 1S

. cendtime 1s null or endtime >= 1s

Explicit lemporal lables

® Accept that it's temporal to-begin with

® Not just a way. to get “history for free”

x Enables Science Fiction: Declaring future state!
x At 9am next Wednesday, state will change

® Eliminates need for “batch jobs”

® May need to pre-record future-dated events!

Science Fiction....

L ¢

FProblems

® oreign Key references into temporal tables are
problematic

x Qverlap?

x Reference disappearing?

® FIXING problems requires “falbricating a historical story”
not just “fixing the state”

lemporality via | x Beterences

® create table transactions (
tx_id Integer primary key default nextval(*tx_seq’),
whodunnit integer not null references users(user _id),
and_when timestampitz not null default NOW/());

® Ccreate table slight
object_1d serial

v temporal_object (

orimary: Key,

tx_id integer not null default currval(‘tx_seq’)
transactions(tx_id));

references

Getting More Temporal - |

x Add ON UPDATE trigger that updates tx_id to currval
(‘tx_seq’)

Viore lemporal: Ristory!

x Create a “past history” table

x Similar schema, but drop:-all- data validation

x Add end_tx

= UPDATE/DELETE throw obsolete tuples into the
“past history table”

x Data validation dropped because validation can change
over time

Serial Number Temporality

x Jsed in DNS

® Sets of updates grouped together temporally

® A “bump of serial- number’ indicates common
publishing at a common point in time

Object Value Zone From To
ns1.albc.org 10.2.3.1 org 1
ns1.albc.org 10.2.3.2 org 3

2

nsZ2.abc.org 10.2.2.1 org

Ns3.albc.org 10.9.1.2 org 1 3
ns1.abc.org 10.2.3.1 Info 17 19
nsZ2.abc.org 10.2.3.2 Info 14 18
nsZ2.abc.org 10.9.1.2 Info 18
ns3d.abc.org 141.2.3.4 info 19

/Zone Representation Merits

® [t's fast. We extract multimillion: record zones in
minutes

= Arbitrary ability to roll back:..
x Nicely supports DNS AXER/IXER operations

® Each serial # represents a sort of “LL.ogical Commit”

Further Merits ot this

x Bename “zone” to “module” and this Is nice for
configuration

® \We already know it supports large amounts of data
efficiently

x Configuration is smaller (we hope!)

Demerits of zone-like structure

= No way to specity a point of time in the future
x Serial numbers are intended 1o just keep rolling along

x HOWEVER...

x \With complex apps & configuration, fancier temporality
looks like a misteature

Conclusions

= 3 ways to represent temporalinformation
® [imestamps, lransaction |Ds; Serial numioers
x PostgreSQL changes possible

x Should PGtemporal be added to “core”?

® Should we try to have temporal foreign key
functionality in core?

