
Reconciling Databases
(using schemas, Slony, DBI-Link, pgTAP

and other tools)

Norman Yamada
The Millburn Corporation

nyamada@millburncorp.com

Basic Problem
● Data-driven application
● Inputs (e.g., prices, market hours, inventory levels)

processed by algorithmic models using GNU R to
produce output (e.g. signals)

● Both inputs and models can change at any time
● Bad data
● Corrections/revisions to models

● How do we test/compare our changes?

Traditional solution for code
development

● Development/Staging/Production servers

● Code developed only on dev server

● When developer ready, change pushed to staging
server.

● Staging server = Production server + 1 change

● Regression tests on all servers/automated builds
from source control/scripted deployment

But data is not static

● Price data continually changes--corrections
even to historical data

– Different sources for prices may have
different data

● For new markets, often real-time data best
way to test

● Metadata for algorithmic models may change:
sampling rate, number of inputs, etc…

Our use case
● Input tables

● Instrument – Corn

● Contract – Corn January 2010

● Price – Corn Jan 2010 on 5/22/2009

● Models – Buy commodity if price yesterday > price 3 months ago

● Parameter tables
● Roll schedule – when do we switch from one contract to the next?

● Market – Corn (always using nearest contract)

● Market models – apply models A, B & C to Corn

● Output tables
● Price percent – continuous stream of price changes for given market

● Signals (buy / sell) – results of applying models to market on given date

● Simulated profits – what should have happened...

How do we test and stage our
data-driven application?

Development Environment

Production

Stage

Dev
Dev

Prod

Stage

Prod

Prod

Slony replication

Model Processors Database Servers Changeset Server

DBI-Link

Dev

Stage

Prod

GNU R

Schemas and Slony

● Replication via Slony from production server
to dev and stage

● Slony provides asynchronous table
replication; blocks writes on slave nodes

● Duplicate tables for metadata in another
schema: stage has stage schema, dev has
dev schema

● Change search_path to see different results

Search Path gotchas

● SET search_path / SHOW search_path
● Foreign key constraints explicitly

remember search path from time of
creation

● Remember default search_path is
$user,public (don’t create $user schema
unless you really want it!)

Search Path gotchas (cont.)
● Functions cache query plan

– If run same function in same connection twice with
different search_path settings, connection will use
first search_path setting for function

• Can explicitly pass in set search_path to function, but may
not be what you want

– Simpler to reconnect
● If you create tables like this:

CREATE TABLE foo (LIKE prod.foo INCLUDING INDEXES
 INCLUDING CONSTRAINTS INCLUDING DEFAULTS)

remember to drop default on any synthetic keys and
explicitly re-create sequence in new schema; and to
check path of foreign key constraints

Replication possibilities
● Synchronous replication

● WAL shipping (but only warm standby)
● Hot standby in 8.5?

● Asynchronous replication
● Slony
● Command Prompt Replicator (Mammoth)
● Londiste
● Golconde
● Bucardo

Slony basics
● Adds triggers to replicated tables

● System catalog hackery if Postgres version < 8.3

● Slave node tables are read-only

● Writes event log that tracks data changes on replicated
tables into its own schema

● Replication sets can be made of one or many tables

● Different nodes can replicate different sets

● Requires one slon daemon per node to push/pull changes

● Nodes can be cascaded

Slony gotchas

● All schema changes on replicated
tables must be added through
EXECUTE DDL scripts

● Asynchronous replication means
slaves can fall behind, especially on
large deletes/copies. \copy on master
node = inserts on slave node.

● Never truncate replicated tables!

Slony gotchas -- continued

● Foreign keys on non-replicated tables that
references replicated tables must be dropped
through Slonik EXECUTE DDL scripts

● All triggers on replicated tables are
automatically disabled on slave nodes. To
enable triggers on slave nodes, use Slonik
STORE TRIGGER command (not true in
Slony 2.x).

● Functions must be kept in sync manually!

Reconciling Databases

● Three different problems
● Reconciling data
● Reconciling table structures
● Reconciling functions, indexes, constraints,

triggers and views

Slony replication and different
schemas give us

prod/stage/dev database
environments – but ...

Issue 1:

How do we reconcile data
between the different

databases and schemas?

Easy stuff
● Between stage and public and test and

public, since both live in the same
database

● But usually we need to compare test to
stage, since we're pushing database
changes this way...

Oh oh... no cross-database queries...

How to do cross-database
queries?

● Outside database:
● pg_comparator (

http://www.coelho.net/pg_comparator/)
● Home-grown

● Inside database:
● Dblink
● DBI-Link

http://www.coelho.net/pg_comparator/

DBI-Link

● David Fetter’s project
(http://pgfoundry.org/projects/dbi-link/) to
treat heterogenous data sources as tables
within Postgres

● Uses plperlu + DBI to connect to other
datasources; uses empty tables and rules to
make other datasources seem like different
schema in host database

DBI-Link setup

● CREATELANG plperlu linkdb
● Install DBD::Pg on database server
● psql -d linkdb -f dbi_link.sql

SELECT make_accessor_functions(
 ‘dbi:Pg:devdb:dev_server’,
 ‘username’,‘password”,
 ‘--
AutoCommit:1
RaiseError:1
--’::dbi_link.yaml, --YAML for DBI connection attributes
NULL::dbi_link.yaml, --YAML for DBI connection environment
 ‘dev’, --Remote schema name
 NULL::text, --Remote catalog name
 ‘dev’) --Local schema name

DBI-Link setup (continued)

● Should now be able to run simple queries
on remote tables as if in link database

● If remote schema changes, must do the
following:
– DROP SCHEMA dev CASCADE;
– SELECT

dbi_link.refresh_schema(data_source_id)
FROM
 dbi_link.dbi_connection
WHERE local_schema = ’dev';

DBI-Link gotchas

● Can’t use indexes; must load entire
contents of table into memory

● Currently, no real support for arrays

How do we figure out what’s
changed?

● EXCEPT queries between same tables
in different schemas?
– Gets inserts or deletes -- but how do we

figure out updates?
– Dynamic query that compares contents of

fields will break when one schema’s field
has a null and the other doesn’t

• If master.foo is null and slave.foo = 3,
then (master.foo = slave.foo) = NULL!

Use ROW(*) comparison

● SELECT sf.ROW(*),pf.ROW(*)
from stage.foo sf
full outer join public.foo pf
on sf.pkey = pf.pkey
WHERE sf.ROW(*) IS DISTINCT
FROM pf.ROW(*)
– Handles nulls for you: (null compared to

non-null) = false, not null!

Create changeset from
ROW(*) query

● Cast ROW back up to recordset
● If right side is null, need to insert row
● If left side is null, need to delete row
● If both sides have content, need to

update row
– Easy to make reversal set at same time

Sample SQL
-- reconciling test.foo v. stage.foo
(bar_int int,baz_text text, primary key bar_int)

SELECT
 --rename fields so easier to distinguish master vs. slave field
 master_row.bar_int AS bar_int_m,
 master_row.baz_text AS baz_text_m,
 slave_row.bar_int AS bar_int_s,
 slave_row.baz_test AS baz_text_s,
 CASE WHEN slave_row IS NULL
 THEN 'I'::varchar
 WHEN master_row IS NULL
 THEN 'D'::varchar
 ELSE 'U'::varchar END AS ddl_action
 FROM
 (
 SELECT ROW(m.*)::foo as master_row,
 ROW(s.*)::foo as slave_row
 FROM test.foo m
 FULL OUTER JOIN stage.foo s
 ON m.bar_int = s.bar_int
 WHERE row(m.*)::foo IS DISTINCT FROM row(s.*)::foo
) as x;

Problem: Must verify
changesets

● Changes to metadata tables not all
promoted at same time

● Changesets can get out of sync--need
to verify content in changeset is still in
database

Use digest to vet changeset /
reverse changeset

● Before applying changeset, regenerate
all differences. Take MD5() of DDL
statements.
– Strict commit: if any line in changeset is

missing md5 entry in current set of
differences, throw out whole set

– OR
– Relaxed commit: if any line in changeset is

missing md5 entry, throw out line

Edge cases
● Sometimes metadata tables need to be

combined or need to overlap:
● Edge case 1: discrete additions added to large

table
● Edge case 2: overlapping/conflicting data to

replace records in large table

Edge Case I -- Discrete
additions to large table

● Want to test 100K new prices for new market
– No overlap with current data
– Don’t want to add to public schema if not useful

● Use inheritance and schemas
– Set search_path to dev, public;
– ALTER TABLE public.price INHERITS dev.price
– Hides dev.price if search_path=public; shows

dev.price + public.price if search_price=dev,public
● Simple select * from price will worrk

Edge Case II -- Replacing
prices

● Want to test replacing 100K prices for
already existing market -- some dates
are accurate in production

● Since prices are different between
schema, normal query will show both
series of prices

● Have to create custom accessor
function or view

Example of accessor function
-- Price table:
-- (price_id serial primary key not null,
-- contract_id int not null, sampletime_id int not null,
-- dte timestamp, open numeric, high numeric,
-- low numeric, settle numeric, volume numeric, open_interest numeric)
-- with candidate key (contract_id,sampletime_id,dte);
CREATE OR REPLACE FUNCTION get_prices(wk_contract_id int, wk_sampletime_id

int) AS
$$
 SELECT price_id,dte, open, high, low, settle, volume, open_interest
 FROM ONLY test.price t_pub
 WHERE contract_id = $1
 AND sampletime_id = $2
 UNION
 SELECT price_id, dte, open, high, low, settle, volume, open_interest
 FROM only public.price p_pub
 WHERE contract_id = $1
 AND sampletime_id = $2
 AND NOT EXISTS (SELECT NULL
 FROM ONLY test.price
 WHERE contract_id = $1
 AND sampletime_id = $2
 AND dte = p_pub.dte)
$$ LANGUAGE 'SQL';

Problems with these approaches

● If using synthetic primary keys, sequences
may have to adjusted to avoid overlap

● Changing inheritance of public table will
break identity of schema across nodes

● Accessor functions hurt performance

Limitations

● Changesets can’t be used to promote
changes in column definitions, defaults,
constraints or triggers for tables.

● Changesets can’t be used to promote
functions or views

● Changesets can’t validate trigger
function equality

Limitations (continued)

● Inserts and updates in public schema may need to trigger events in other
schemas

● Same trigger function wants to write to different table based on
search_path of connection. Because of caching of function plans, may
have to do the following:
DECLARE

 l_savesearchpath text;

 l_newsearchpath text;

BEGIN

 raise notice 'aggregate_updates (... with schema)';

 select into l_savesearchpath current_setting('search_path');

 raise notice 'Current search path is %', l_savesearchpath;

 select into l_newsearchpath set_config('search_path','' || $1 || '','f');

 raise notice 'Using search path %', l_newsearchpath;

 perform aggregate_updates();

 select into l_newsearchpath set_config('search_path','' ||
l_savesearchpath || '','f');

 raise notice 'Restored search path is %', l_newsearchpath;

Triggers vs. Messages
● Could use messages

● Simplifies event handling
● Alternatives:

– LISTEN/NOTIFY (but can only take a NAME (no
other payload)

– PgQ
– External message queue

● ActiveMQ
● RabbitMQ
● WebsphereMQ

Issues 2 and 3:

How do we 2) reconcile DDL
and 3) functions, triggers and
views between databases and

schemas?

Possible ideas
● Issue 2:

– Script promotion of DDL changes, function changes via
external application (e.g., Robert Brewer's post facto –
http://post-facto.org/)

● Issue 3:

– Functions in source control; automated checkout and
deployment

– Test table definition, constraints, and function behavior and
expected signatures via David Wheeler's pgTAP (
http://pgtap.projects.postgresql.org/)

• PL/pgSQLversion of TAP (Test Anything Protocol)

• has_column(), col_not_null(), col_has_default() for column
definitions; has_fk() for column constraints

• has_trigger(), trigger_is() to test trigger unity

• can(), can_ok() to test function behavior and signatures

http://post-facto.org/
http://pgtap.projects.postgresql.org/

Questions?

	Reconciling Databases (Using schemas, Slony and DBI-Link)
	Basic Problem
	Traditional solution for code development
	But data is not static
	Slide 5
	How do we test and stage data-driven applications?
	Development Environment
	Schemas and Slony
	Search Path gotchas
	Search Path gotchas (continued)
	Slide 11
	Slide 12
	Slony gotchas
	Slony gotchas -- continued
	Slide 15
	How can we reconcile data between schemas?
	Slide 17
	Slide 18
	Slide 19
	DBI-Link
	DBI-Link setup
	DBI-Link setup (continued)
	DBI-Link gotchas
	How do we figure out what’s changed?
	Use ROW(*) comparison
	Create changeset from ROW(*) query
	Sample SQL
	Problem: Must verify changesets
	Use digest to vet changeset / reversal changeset
	Slide 30
	Edge Case I -- Discrete additions to large table
	Edge Case II -- Replacing prices
	Example of accessor function
	Slide 34
	Limitations
	Slide 36
	Slide 37
	Slide 38
	Possible development
	Questions?

