Reconciling Databases
(using schemas, Slony, DBI-Link, pgTAP
and other tools)

Norman Yamada
The Millburn Corporation

nyamada@millburncorp.com

Basic Problem

Data-driven application

Inputs (e.g., prices, market hours, inventory levels)
processed by algorithmic models using GNU R to
produce output (e.g. signals)

Both inputs and models can change at any time

« Bad data
o Corrections/revisions to models
How do we test/compare our changes?

Traditional solution for code
development

« Development/Staging/Production servers
« Code developed only on dev server

« When developer ready, change pushed to staging
server.

« Staging server = Production server + 1 change

« Regression tests on all servers/automated builds
from source control/scripted deployment

But data is not static

* Price data continually changes--corrections
even to historical data

- Different sources for prices may have
different data
 For new markets, often real-time data best
way to test

* Metadata for algorithmic models may change:
sampling rate, number of inputs, etc...

Our use case

« Input tables

« Instrument — Corn

« Contract — Corn January 2010

« Price — Corn Jan 2010 on 5/22/2009

« Models — Buy commodity if price yesterday > price 3 months ago
« Parameter tables

« Roll schedule — when do we switch from one contract to the next?

« Market — Corn (always using nearest contract)

« Market models — apply models A, B & C to Corn

« Output tables
« Price percent — continuous stream of price changes for given market

« Signals (buy / sell) — results of applying models to market on given date
« Simulated profits — what should have happened...

How do we test and stage our
data-driven application”?

Development Environment

Model Processors Database Servers - Changeset Server

Slony replication

_GNUR | T b

.
e,
™,
.,
ey,
b
b
.....
0
.....
.
0
.....
™

Stage

Dev

Schemas and Slony

* Replication via Slony from production server
to dev and stage

» Slony provides asynchronous table
replication; blocks writes on slave nodes

* Duplicate tables for metadata in another
schema: stage has stage schema, dev has
dev schema

 Change search_path to see different results

Search Path gotchas

« SET search_path / SHOW search_path

* Foreign key constraints explicitly
remember search path from time of
creation

» Remember default search_path is
$user,public (don’t create $user schema
unless you really want it!)

Search Path gotchas (cont.)

e Functions cache query plan

— If run same function in same connection twice with
different search_path settings, connection will use
first search_path setting for function

» Can explicitly pass in set search_path to function, but may
not be what you want

— Simpler to reconnect

 If you create tables like this:

CREATE TABLE foo (LIKE prod.foo INCLUDING INDEXES
INCLUDING CONSTRAINTS INCLUDING DEFAULTS)

remember to drop default on any synthetic keys and
explicitly re-create sequence in new schema; and to
check path of foreign key constraints

Replication possiblilities
e Synchronous replication

« WAL shipping (but only warm standby)
« Hot standby in 8.57

« Asynchronous replication
« Slony

Command Prompt Replicator (Mammoth)
Londiste

Golconde

Bucardo

Slony basics
« Adds triggers to replicated tables

« System catalog hackery if Postgres version < 8.3

« Slave node tables are read-only

« Writes event log that tracks data changes on replicated
tables into its own schema

Replication sets can be made of one or many tables

Different nodes can replicate different sets

Requires one slon daemon per node to push/pull changes
Nodes can be cascaded

Slony gotchas

» All schema changes on replicated
tables must be added through
EXECUTE DDL scripts

* Asynchronous replication means
slaves can fall behind, especially on
large deletes/copies. \copy on master
node = inserts on slave node.

* Never truncate replicated tables!

Slony gotchas -- continued

* Foreign keys on non-replicated tables that
references replicated tables must be dropped
through Slonik EXECUTE DDL scripts

 All triggers on replicated tables are
automatically disabled on slave nodes. To
enable triggers on slave nodes, use Slonik
STORE TRIGGER command (not true in

Slony 2.x).
* Functions must be kept in sync manually!

Reconciling Databases

* Three different problems

* Reconciling data
* Reconciling table structures

* Reconciling functions, indexes, constraints,
triggers and views

Slony replication and different
schemas give us
prod/stage/dev database
environments — but ...

Issue 1:

How do we reconcile data
between the different
databases and schemas?

Easy stuff

» Between stage and public and test and
public, since both live in the same
database

* But usually we need to compare test to
stage, since we're pushing database
changes this way...

Oh oh... no cross-database queries...

How to do cross-database
queries”?
e QOutside database:

* pg_comparator (
http://www.coelho.net/pg_comparator/)

« Home-grown
* Inside database:

e Dblink
« DBI-Link

http://www.coelho.net/pg_comparator/

DBI-Link

» David Fetter’s project
(http://pgfoundry.org/projects/dbi-link/) to
treat heterogenous data sources as tables
within Postgres

* Uses plperlu + DBI to connect to other
datasources; uses empty tables and rules to
make other datasources seem like different
schema in host database

DBI-Link setup

« CREATELANG plperlu linkdb
« |Install DBD::Pg on database server
e psql -d linkdb -f dbi_link.sql

SELECT make_accessor_functions(
‘dbi:Pg:devdb:dev_server’,
‘username’, ‘password”,

3

AutoCommit:1
RaiseError:1

--"::dbi_link.yaml, --YAML for DBI connection attributes
NULL::dbi _link.yaml, --YAML for DBI connection environment
‘dev’, --Remote schema name
NULL: : text, --Remote catalog name

‘dev’) --Local schema name

DBI-Link setup (continued)

Should now be able to run simple queries
on remote tables as if in link database

If remote schema changes, must do the
following:

— DROP SCHEMA dev CASCADE;

— SELECT
dbi_link.refresh_schema(data_source_id)
FROM

dbi_link.dbi_connection
WHERE local _schema = 'deV';

DBI-Link gotchas

» Can’t use indexes; must load entire
contents of table into memory

» Currently, no real support for arrays

How do we figure out what's
changed?

« EXCEPT queries between same tables
In different schemas?

— Gets inserts or deletes -- but how do we
figure out updates?

— Dynamic query that compares contents of
fields will break when one schema’s field
has a null and the other doesn’t

* |[f master.foo is null and slave.foo = 3,
then (master.foo = slave.foo) = NULL!

Use ROW(*) comparison

« SELECT st.ROW(*),pf.ROW(*)
from stage.foo sf
full outer join public.foo pf
on sf.pkey = pf.pkey
WHERE sf.ROW(*) IS DISTINCT
FROM pf.ROW(*)

— Handles nulls for you: (null compared to
non-null) = false, not null!

Create changeset from
ROW(*) query

Cast ROW back up to recordset
f right side is null, need to insert row
f left side is null, need to delete row

f both sides have content, need to
update row

— Easy to make reversal set at same time

Sample SQL

-- reconciling test.foo v. stage.foo
(bar_int int,baz_text text, primary key bar_int)

SELECT
--rename fields so easier to distinguish master vs. slave field

master_row.bar_int AS bar_int m,
master_row.baz_text AS baz_ text_m,
slave _row.bar_int AS bar_int_s,
slave row.baz_test AS baz_text_ s,
CASE WHEN slave row IS NULL
THEN 'I'::varchar
WHEN master_row IS NULL
THEN 'D'::varchar
ELSE 'U'::varchar END AS ddl_action
FROM

SELECT ROW(m.*)::foo as master_row,
ROW(s.*)::foo as slave_ row
FROM test.foo m
FULL OUTER JOIN stage.foo s
ON m.bar_int = s.bar_int
WHERE row(m.*)::foo IS DISTINCT FROM row(s.*)::foo
) as X;

Problem: Must verify
changesets

 Changes to metadata tables not all
promoted at same time

» Changesets can get out of sync--need
to verify content in changeset is still in
database

Use digest to vet changeset /
reverse changeset

» Before applying changeset, regenerate
all differences. Take MD5() of DDL

statements.

— Strict commit: if any line in changeset is
missing mdS entry in current set of
differences, throw out whole set

- OR

— Relaxed commit: if any line in changeset is
missing md5 entry, throw out line

Edge cases

e Sometimes metadata tables need to be
combined or need to overlap:

 Edge case 1: discrete additions added to large
table

* Edge case 2: overlapping/conflicting data to
replace records in large table

Edge Case | -- Discrete
additions to large table

Want to test 100K new prices for new market

— No overlap with current data
— Don’t want to add to public schema if not useful

Use inheritance and schemas

— Set search_path to dev, public;
— ALTER TABLE public.price INHERITS dev.price

— Hides dev.price if search_path=public; shows
dev.price + public.price if search_price=dev,public

Simple select * from price will worrk

Edge Case |l -- Replacing
prices

» Want to test replacing 100K prices for
already existing market -- some dates
are accurate in production

» Since prices are different between
schema, normal query will show both
series of prices

e Have to create custom accessor
function or view

Example of accessor function

-- Price table:
-- (price_id serial primary key not null,
-- contract_id int not null, sampletime_id int not null,
-- dte timestamp, open numeric, high numeric,
-- low numeric, settle numeric, volume numeric, open_interest numeric)
-- with candidate key (contract _id,sampletime_id,dte);
CREATE OR REPLACE FUNCTION get prices(wk _contract id int, wk _sampletime_ id
int) AS
$$
SELECT price_id,dte, open, high, low, settle, volume, open_interest
FROM ONLY test.price t_pub
WHERE contract _id = $1
AND sampletime_id = $2
UNION
SELECT price_id, dte, open, high, low, settle, volume, open_interest
FROM only public.price p_pub
WHERE contract _id = $1
AND sampletime_id = $2
AND NOT EXISTS (SELECT NULL
FROM ONLY test.price
WHERE contract_id = $1
AND sampletime_id = $2
AND dte = p _pub.dte)
$$ LANGUAGE 'SQL';

Problems with these approaches

* |f using synthetic primary keys, sequences
may have to adjusted to avoid overlap

* Changing inheritance of public table will
break identity of schema across nodes

* Accessor functions hurt performance

Limitations

 Changesets can't be used to promote
changes in column definitions, defaults,
constraints or triggers for tables.

 Changesets can’t be used to promote
functions or views

* Changesets can’t validate trigger
function equality

Limitations (continued)

. Inserts and updates in public schema may need to trigger events in other
schemas

. Same trigger function wants to write to different table based on
search_path of connection. Because of caching of function plans, may
have to do the following:

DECLARE
1 savesearchpath text;
1 newsearchpath text;
BEGIN
raise notice 'aggregate updates (... with schema)';
select into 1 savesearchpath current setting('search path');
raise notice 'Current search path is %', 1 savesearchpath;
select into 1 newsearchpath set config('search path','' || S1 || "','f£");
raise notice 'Using search path %', 1 newsearchpath;
perform aggregate updates();

select into 1 newsearchpath set config('search path','"' ||
1 savesearchpath || '',"'f");

raise notice 'Restored search path is %', 1 newsearchpath;

Triggers vs. Messages
* Could use messages

o Simplifies event handling

e Alternatives:

- LISTEN/NOTIFY (but can only take a NAME (no
other payload)

- PgQ

- External message queue

* ActiveMQ
« RabbitMQ
* WebsphereMQ

Issues 2 and 3:

How do we 2) reconcile DDL
and 3) functions, triggers and
views between databases and

schemas?

Possible ideas

e Issue 2:
— Script promotion of DDL changes, function changes via
external application (e.g., Robert Brewer's post facto —
http://post-facto.org/)

e Issue 3:

— Functions in source control; automated checkout and
deployment

— Test table definition, constraints, and function behavior and
expected signatures via David Wheeler's pgTAP (
http://pgtap.projects.postgresql.org/)

« PL/pgSQLversion of TAP (Test Anything Protocol)

- has_column(), col_not_nuli(), col_has_default() for column
definitions; has_fk() for column constraints

. has_trigger(), trigger_is() to test trigger unity
« can(), can_ok() to test function behavior and signatures

http://post-facto.org/
http://pgtap.projects.postgresql.org/

Questions?

	Reconciling Databases (Using schemas, Slony and DBI-Link)
	Basic Problem
	Traditional solution for code development
	But data is not static
	Slide 5
	How do we test and stage data-driven applications?
	Development Environment
	Schemas and Slony
	Search Path gotchas
	Search Path gotchas (continued)
	Slide 11
	Slide 12
	Slony gotchas
	Slony gotchas -- continued
	Slide 15
	How can we reconcile data between schemas?
	Slide 17
	Slide 18
	Slide 19
	DBI-Link
	DBI-Link setup
	DBI-Link setup (continued)
	DBI-Link gotchas
	How do we figure out what’s changed?
	Use ROW(*) comparison
	Create changeset from ROW(*) query
	Sample SQL
	Problem: Must verify changesets
	Use digest to vet changeset / reversal changeset
	Slide 30
	Edge Case I -- Discrete additions to large table
	Edge Case II -- Replacing prices
	Example of accessor function
	Slide 34
	Limitations
	Slide 36
	Slide 37
	Slide 38
	Possible development
	Questions?

