
Enterprise Rails
by Dan Chak

Draft for Preview Only. Copyright ©2008 O’Reilly Media Inc.

Enterprise Rails
by Dan Chak

Table of Contents

1. Introduction
2. Big picture
3. Organizing an Application
4. Organizing with Plug-ins
5. Organizing with Modules
6. Database as a Fortress
7. Building a Solid Data Model
8. Refactoring to Third Normal Form
9. Dealing with Domain Data
10. Composite Keys and Domain Key / Normal Form (DK/NF)
11. Guaranteeing Complex Relationships with Triggers
12. Multiple Table Inheritance (MTI)
13. View-backed Models

14. Materialized Views Preview Chapter

15. Service Oriented Architecture (SOA) Primer
16. SOA Considerations
17. REST Primer
18. An XML-RPC Service
19. Refactoring to Services
20. A REST Web-service
21. End-to-end Caching

Draft for Preview Only. Copyright ©2008 O’Reilly Media Inc.

Draft for Preview Only. Copyright ©2008 O’Reilly Media Inc.

1

14
Materialized Views

When you aren’t caching anything, every page load incurs the penalty of the queries
required to make up that page. Initially, when you don’t have much data, and you don’t
have many users requesting pages, your application will be snappy. Unfortunately, with
any amount of success, you eventually get hit with three problems seemingly all at once:

1. Your application becomes popular and the traffic you need to handle has grown by

orders of magnitude.

2. As you sign new customers, gather data, and even simply exist, the amount of data in

your database grows by orders of magnitude.

3. Your application grows in complexity and more queries are required to render any

given page.

Although most people would be envious of these problems (and the business side of your
company would term them “successes”), you nonetheless have to deal with them.

Caching – the act of saving some queried or calculated result for future use – is not as
simple and clear-cut as it sounds. A number of subtle issues surround correct caching,
which go beyond picking a cache key and storing data in the cache behind that key.

The first issue is of freshness. Can your cache lag behind the true values of your data, or
does it need to reflect the latest values?

Next is correctness. If your goal is to keep the cache up to date, have you accounted for
every situation where your cache needs to be invalidated or rebuilt? How do you know
you’ve hit all of these cases?

Finally is the cost amortization of keeping the cache accurate. The purpose of caching is
to reduce database load and to speed up requests, but someone still must has pay the price
for cache updates. Either the requestor who invalidates the cache, or the next person to
request the invalidated items will pay part or all of the cost. Choosing the wrong strategy
for rebuilding can erase all of the gains that caching was meant to achieve in the first
place.

Draft for Preview Only. Copyright ©2008 O’Reilly Media Inc.

2

In Chapter 13, we saw that a database view can be thought of as a named query. Even
though a complex query can be hidden behind a simple view name, whenever you select
from that view, you pay the price of database joins, subselects, filters, and functions that
may be required to calculate the view results. A materialized view is a cached
representation of a database view, stored in a regular table. Rather than query from the
view with arbitrary complexity, with view materialization, an indexed table can be
queried instead, with O(1) response time.

Chapter 21 contains an overview of caching at all layers of the application. In this
chapter, we’ll look in depth at caching at a single layer where we have already gained
some experience: the database. The principles we will encounter at this layer are the
same as those present at other layers of the application, but the database is the layer with
the best tools for guaranteeing cache correctness. It is also the most mature and stable
layer, so what you learn in this chapter can be applied to other caching problems for years
to come, even as feature sets and APIs change for application layer caching solutions.

One way to look at database view materialization is that it is like “wax on, wax off” in
Karate Kid. It can appear painful and tedious, but when you are ready for your ultimate
caching battle, where the tools may not be as thorough and you need to rely on your wits,
having a thorough background in caching via wax on, wax off practice will help you
identify what elements may be missing from other caching at other layers, so you can be
nimble as you come up with your own solutions. As you read this chapter, think beyond
the database layer and identify analogs at the application layer to each situation, problem,
and technique described.

Before proceeding, I’d like to give credit where credit is due, and pay tribute to Jonathan
Gardner, who laid the groundwork for many who tread these waters in his online article,
Materialized Views in PostgreSQL.

Materialized View Principles
A materialized view is a cache-complete copy of your view. This means that every
record in the original view appears in the materialized view. This is unlike an LRU
cache, where items may expire from the cache if they are not used frequently, of it the set
of data being cached exceeds the memory set aside for caching. In a cache-complete
implementation, if an item is not in the cache, the application can assume it does not
exist. Sometimes these caches are also referred to as write-through caches, meaning that
you always update the cached copy when you update data in its primary location.

In this chapter, we will build a cache-complete materialized view for the
current_movie_showtimes developed in the previous chapter. To create a
materialized view, we put together a number of building blocks, which will be described
in detail throughout this chapter.

The first building block is an initial view to be materialized, which ideally abides by
some guidelines that ease materialization. We’ll go through some slight modifications to
our original view to get it into proper form before we begin.

Next is a target table in which we’ll store the cached copy of the view. Unlike a view,
which acts like a table, this is a fully fledged physical table, which means we can take
advantage of indexing and other features only available with physical tables. In the game
of performance enhancements, materializing the view is a big win in and of itself, but
adding appropriate indexes hits a home run with the bases loaded.

Draft for Preview Only. Copyright ©2008 O’Reilly Media Inc.

3

After we have an initial snapshot in our target table, we’ll need a refresh function that can
update a single record in the materialized view when we detect a change in the base view.
Sometimes we don’t want to refresh right away – we instead want to put the compute
cycles needed to refresh the cache off for the future – and for these cases we’ll create an
invalidation function that marks a record as stale, but doesn’t actually do the work of
updating it.

We’ll detect changes to the view by adding triggers to the base tables that make up the
view. These triggers will – as the name implies – trigger either a refresh or an
invalidation of the rows in our materialized view that are about to become out of sync.

Finally, we’ll add some auxiliary views, including the reconciler view, on top of our
target table to hide the fact that we’ve materialized the view at all. In addition to hiding
our implementation from end-users, the reconciler view will ensure that accurate
information is always returned, even if parts of the target table have gone stale or are
marked invalid.

A view to materialize
First, we need something worth materializing. We’ll start with our view from the
previous chapter, but we’ll make it a bit more complex so that we can explore a variety of
caching techniques. Example 1 shows an extended version of our view, which
incorporates the number of seats available in a theatre as seats_available, and the
number of tickets purchased thus far as tickets_purchased. Since the purpose of
this view is to show movie showtimes for which we can sell tickets, a filter has been
added to the where clause to filter out showtimes that are sold out. Additions to our
original view are shown in bold.

Example 14-1. A slightly more complex version of our original view from Chapter 13

create or replace view current_movie_showtimes as
 select m.name,
 m.rating_id,
 m.length_minutes,
 ms.*,
 t.name as theatre_name,
 t.zip_code,
 z.latitude,
 z.longitude,
 a.seats_available,
 coalesce(ptc.purchased_tickets_count, 0) as purchased_tickets_count
 from movie_showtimes ms
 join movies m on (ms.movie_id = m.id)
 join theatres t on (ms.theatre_id = t.id)
 join zip_codes z on (t.zip_code = z.zip)
 join auditoriums a on (ms.room = a.room and ms.theatre_id = a.theatre_id)
 left outer join (
 select count(*) as purchased_tickets_count,
 o.movie_showtime_id
 from orders o,
 purchased_tickets pt
 where pt.order_confirmation_code = o.confirmation_code
group by o.movie_showtime_id
) ptc on (ptc.movie_showtime_id = ms.id)
 where (ms.start_time - now()) < '1 week'::interval and ms.start_time > now()

Draft for Preview Only. Copyright ©2008 O’Reilly Media Inc.

4

 and a.seats_available > coalesce(ptc.purchased_tickets_count, 0);

Let’s pick apart some finer parts of this query to introduce some database concepts you
may not be familiar with.

First, although normally you join against a table or view, you can also join against a
named query. Indeed, recall from the previous chapter that a view is also nothing more
than a named query. In this example, we’ve created a named query called ptc, for
“purchased tickets count.” It is a single-use named query. Unlike a view, this named
query – ptc – has no meaning outside of this single place it is used; outside of the
current_movie_showtimes view it is out of scope. Of course, we could also cast
ptc as fully-fledged view of its own with create view, and then we could join
directly against the view. That would make current_movie_showtimes more
readable, and would also be a good idea if we wanted to use this subquery elsewhere.
For now, we’ll leave it as is and return to this idea when we talk about cascading
materialized views.

Next, we’ve done a left outer join in our join against ptc. Unlike a regular join, which
removes items for which there is no match between the two join tables, in a left outer
join, every row from the table on the left remains regardless of whether there is a
matching row from the table on the right. When there is no match, columns from the
table on the right are filled with null values. In this example, if there are no tickets
purchased for a given showtime, there would be no result row in the ptc subquery.
However, we don’t want to lose the fact that a showtime is current and has tickets
available for purchase just because no one has purchased any tickets yet! That brings us
to the third finer point of this query, coalesce.

The coalesce function takes an arbitrary number of arguments, and returns the first
one that is not null. Here, we’re coalescing the number of ticket purchases – which will
be null if none have been purchased yet – with 0, which is the actual value we want
output when there aren’t any tickets sold. So although a left outer join normally returns
nulls when there’s no match in the right-hand table, we’re substituting a value that makes
sense for our domain.

Getting into form

Although it is not technically mandatory to do so, it makes it a bit easier to implement a
materialized view if every row from the view’s main table is present in the view to be
materialized. In order to accomplish this, we re-cast elements of the where clause into
Boolean columns in the table itself. Rather than filter out showtimes that aren’t current,
those showtimes will have a false entry in the current column, and movies that are
current will have true. Likewise for sold out shows; they’ll have a true entry in the
sold_out column, and shows with seats available will have a false value there.
Example 2 shows our rewritten view the new columns in bold.

Example 14-2. where clause recast as Boolean columns to ensure every row from main
base table is always represented

create or replace view movie_showtimes_with_current_and_sold_out_unmaterialized as
 select m.name,
 m.rating_id,
 m.length_minutes,
 ms.*,
 t.name as theatre_name,

Draft for Preview Only. Copyright ©2008 O’Reilly Media Inc.

5

 t.zip_code,
 z.latitude,
 z.longitude,
 a.seats_available,
 coalesce(ptc.purchased_tickets_count, 0) as purchased_tickets_count,
 ((ms.start_time - now()) < '1 week'::interval and ms.start_time > now())
as current,
 (a.seats_available < coalesce(ptc.purchased_tickets_count, 0)) as sold_out
 from movie_showtimes ms
 join movies m on (ms.movie_id = m.id)
 join theatres t on (ms.theatre_id = t.id)
 join zip_codes z on (t.zip_code = z.zip)
 join auditoriums a on (ms.room = a.room and ms.theatre_id = a.theatre_id)
 left outer join (
 select count(*) as purchased_tickets_count,
 o.movie_showtime_id
 from orders o,
 purchased_tickets pt
 where pt.order_confirmation_code = o.confirmation_code
group by o.movie_showtime_id
) ptc on (ptc.movie_showtime_id = ms.id);

Note that in Example 2, we renamed the view from current_movie_showtimes to
movie_showtimes_with_current_and_sold_out_unmaterialized. The
element of the new name with_current_and_sold_out refers to the fact that
we’ve shifted the where clause filters into columns on which we can later apply filters.
We’ve also added the suffix _unmaterialized to signify that this is the version of
the view that is still just a named query. In keeping with idea that the caching
implementation should be transparent to the user, by the end of this chapter, we’ll have a
new entity in our database called current_movie_showtimes which will look and
act just like our original view, but will be orders of magnitude faster.

Another caveat worth mentioning is that the view to be materialized should be capable of
having a primary key. This is another way of saying that there should be a one-to-one
correspondence between the view and its primary base table, and that the primary base
table needs to have a primary key. We’ve already helped guarantee this in our example
by moving the where clause filters into columns, and having only one row in the view per
record from movie_showtimes. The id column from movie_showtimes will
become the primary key of the materialized view. Figure 1 is a reproduction of our
schema diagram from Chapter 13, which you can refer to as we go along.

Figure 14-1. Schema from Chapter 10, for reference

Draft for Preview Only. Copyright ©2008 O’Reilly Media Inc.

6

The Target Table
A materialized view is created by taking an initial snapshot of the data in the
unmaterialized view. Later we’ll add triggers to monitor all of the tables that make up
the view and update the view whenever there is a change. In this way, our materialized
view always stays up to date.

To create the initial materialized view, we execute the following SQL:

create table movie_showtimes_with_current_and_sold_out_and_dirty_and_expiry as
select *,
 false as dirty,
 null::timestamp with time zone as expiry
 from movie_showtimes_with_current_and_sold_out_unmaterialized;

This statement creates a new table called
movie_showtimes_with_current_and_sold_out_and_dirty_and_exp

iry that is pre-filled with all of the data from our view. Two columns have been added:
dirty and expiry. The dirty column will be used to implement deferred refresh
via the invalidation trigger. The expiry column will be used to deal with special cases
where we can’t count on a database event to trigger a refresh. How to use both of these
columns will be explained in detail, but for now you can ignore these columns and think
of the target table as a plain old table that happens to contain the result of our view.
Example 3 shows the table described from a psql prompt.

Example 14-3. The physical table definition of our materialized view

Draft for Preview Only. Copyright ©2008 O’Reilly Media Inc.

7

movies_development=# \d
movie_showtimes_with_current_and_sold_out_with_dirty_and_expiry
 Table "public.movie_showtimes_with_current_and_sold_out"
 Column | Type | Modifiers
-------------------------+--------------------------+-----------
 name | character varying(256) |
 rating_id | character varying(16) |
 length_minutes | integer |
 id | integer |
 movie_id | integer |
 theatre_id | integer |
 room | character varying(64) |
 start_time | timestamp with time zone |
 theatre_name | character varying(256) |
 zip_code | character varying(9) |
 latitude | numeric |
 longitude | numeric |
 seats_available | integer |
 purchased_tickets_count | bigint |
 current | boolean |
 sold_out | boolean |
 dirty | boolean |
 expiry | timestamp with time zone |

Refresh and Invalidation Functions
The next piece of the puzzle is the refresh function. The refresh function takes as its
argument the primary key of the materialized view. In this case, that key corresponds to
the primary key of the movie_showtimes table. Whenever we detect that a row in
our view is invalid, we run the refresh function on that row.

Example 4 shows our first pass at a refresh function. It accepts an integer parameter, the
primary key of the materialized view. First, it deletes the old row keyed on that id. Then,
it re-selects the row with the same id from the unmaterialized view – which is real-time,
and thus guaranteed to be accurate – and inserts it back into the materialized view. It also
replaces the values in the dirty and expiry columns.

Example 14-4. A simple refresh function for a materialized view

create or replace function movie_showtimes_refresh_row(
 id integer
) returns void
security definer
language 'plpgsql' as $$
begin
 delete
 from movie_showtimes_with_current_and_sold_out_and_dirty_and_expiry ms
 where ms.id = id;
 insert into movie_showtimes_with_current_and_sold_out_and_dirty_and_expiry
 select *, false, null
 from movie_showtimes_with_current_and_sold_out_unmaterialized ms
 where ms.id = id;
end
$$;

Draft for Preview Only. Copyright ©2008 O’Reilly Media Inc.

8

Remember that the materialized view is just a table. You can modify it, thus invalidating
the contents, and then run the refresh function on the modified rows to test that it sets
them back to the correct values. Example 5 shows just that. We first find the movie
name for the showtime with id of 1, Casablanca. Next, we invalidate that record in the
materialized view by changing the movie name to be The Godfather. We check, and the
materialized view indeed did allow us to change the record to an invalid value. We run
our refresh function on that row, and when we select the name again, it has been restored
to Casablanca.

Example 14-5. The refresh function patches an invalid row so that it matches the view

movies_development=# select name
movies_development-# from
movie_showtimes_with_current_and_sold_out_and_dirty_and_expiry
movies_development-# where id = 1;
 name

 Casablanca
(1 row)

movies_development=# update
movie_showtimes_with_current_and_sold_out_and_dirty_and_expiry
movies_development-# set name = 'The Godfather'
movies_development-# where id = 1;
UPDATE 1

movies_development=# select name
movies_development-# from
movie_showtimes_with_current_and_sold_out_and_dirty_and_expiry
movies_development-# where id = 1;
 name

 The Godfather
(1 row)

movies_development=# select movie_showtimes_refresh_row(1);
 movie_showtimes_refresh_row

(1 row)

movies_development=# select name
movies_development-# from
movie_showtimes_with_current_and_sold_out_and_dirty_and_expiry
movies_development-# where id = 1;
 name

 Casablanca
(1 row)

Of course, in this case, we knew that the record was invalid because we invalidated it
ourselves. In practice, it won’t be the materialized view that changes to bring the two out
of sync, but the unmaterialized one. We’ll need to detect changes by watching all of the
tables that make up the view with database triggers.

However, there are certain circumstances when observing changes in tables won’t alert us
to a change in our view. Such unobservable changes can arise from mutable functions

Draft for Preview Only. Copyright ©2008 O’Reilly Media Inc.

9

being part of the original view definition. For example, if we had a column based on the
random() function, our materialized view would always be out of sync. Such cases are
rare, though. The most common mutable function is now(), which appears in our view
in the definition of the current column. Before we build any triggers, we’ll first see
how to deal with these unobservable, time-based events.

Time Dependency

Although a seemingly random mutable function can be tricky to deal with, dealing with a
time dependency in a view is straightforward.

The problem we are facing is that it is not a change in the contents of any table that
changes the value of the current column in our view, but simply the passage of time.
In our original view, we have defined current to mean a showtime is in the future, and
starts within one week. So with all else staying constant in our database, a showtime that
is two weeks away should have a false value in current. After the passage of one
week, it should switch to true. Another week later, back to false.

Because time always marches forward at the same pace, we know ahead of time the
moment when the Boolean value in our materialized view needs to flip. If the showtime
is far in the future, then current will become true one week before the start time of the
showing. If the showtime is already current, it will become false when the present time is
equal to the start time. And if the showing was in the past, it will never become current.

With this application-specific knowledge in hand, we can write a function that will tell us
when a row in our materialized view should be considered invalid and in need of a
refresh due to the need to update current. Example 6 shows this function. It takes an
integer parameter referring to the primary key of our view. A local variable
start_time is defined which will hold the start time of the showtime in question.
Then, within the function body, we select the start time from the view and put it in that
variable. Then we run through the logic above to determine the moment in time that our
record should be invalidated.

Example 14-6. A function to determine when a time-dependent row should expire

create or replace function movie_showtime_expiry(
 id integer
) returns timestamp with time zone
security definer
language 'plpgsql' as $$
declare
 start_time timestamp with time zone;
begin
 select into start_time ms.start_time
 from movie_showtimes_with_current_and_sold_out_unmaterialized ms
 where id = id;
 if start_time < now() then
 return null;
 else
 if start_time > now() + '7 days'::interval then
 return start_time - '7 days'::interval;
 else
 return start_time;
 end if;
 end if;

Draft for Preview Only. Copyright ©2008 O’Reilly Media Inc.

10

end
$$;

Armed with this new method, movie_showtime_expiry, we can construct a better
refresh function that will insert the correct record expiration time into the expiry
column, rather than the null placeholder used in Example 4. Example 7 shows our new
function, with the new elements in bold. Note that we’ve also modified the return type of
the refresh function to return the expiration time. We’ll use this later when we come to
the reconciler view.

Example 14-7. A refresh function that calculates row expiry based on a showtime id

create or replace function movie_showtimes_refresh_row(
 id integer
) returns timestamp with time zone
security definer
language 'plpgsql' as $$
declare
 expiry timestamp with time zone;
begin
 expiry := movie_showtime_expiry(id);
 delete from movie_showtimes_with_current_and_sold_out_and_dirty_and_expiry ms
where ms.id = id;
 insert into movie_showtimes_with_current_and_sold_out_and_dirty_and_expiry
 select *, false, expiry
 from movie_showtimes_with_current_and_sold_out_unmaterialized ms
 where ms.id = id;
 return expiry;
end
$$;

We have introduced an inefficiency here. Can you see it? Because we want to return the
expiry value – again, why we do this will become apparent later in this chapter – we have
evaluated our costly unmaterialized view twice: first, in the call to
movie_showtime_expiry, which selects from the unmaterialized view; second, in
the refresh function itself in the predicate of the select. Since our overarching goal here
is to optimize, we’d rather not do this twice what could be done once. Correcting this
inefficiency is left as an exercise for the end of this chapter.

One last problem with time dependency is that our initial snapshot did not contain any
expiration information. It would have helped to have our expiry function ready before
we generated the snapshot, but we can update the entire materialized view with the
following:

select movie_showtimes_refresh_row(id)
 from movie_showtimes_with_current_and_sold_out_and_dirty_and_expiry;

If we had the function available from the start, we could also have created our initial
materialized view with a SQL statement that took the expiry into account:

create table movie_showtimes_with_current_and_sold_out_and_dirty_and_expiry as
select *,
 false as dirty,
 movie_showtimes_refresh_row(id) as expiry
 from movie_showtimes_with_current_and_sold_out_unmaterialized;

Draft for Preview Only. Copyright ©2008 O’Reilly Media Inc.

11

Who pays the price?

Nothing comes for free. Even if queries against a materialized view are fast – O(1) time
– you still have a price to pay to keep the materialized view accurate. O(1) is nothing to
shout about if the data you are retrieving is stale or invalid, and refreshing can be
expensive. In fact, our refresh function makes it clear that the cost of refreshing is as
expensive as the cost of querying our complex, slow, unmaterialized view. Therefore,
it’s important to minimize the amount of time you spend refreshing, and also to refresh at
times that are least likely to be burdensome.

When any table involved in the view definition changes – whether rows are inserted,
updated, or deleted – you may have an event that requires an update to the materialized
view. However, it may not be wise to update the materialized view at the first
opportunity we have to do so.

Figure 2 shows three possible times when we can update our materialized view. The first
is at the exact moment when a change to a base table record causes corresponding records
in the materialized view to become invalid. These events are easily detectable through
database triggers, and are the topic of the next section. The second detectable time we
can refresh is when a user is making a request to the materialized view. If we know
records are invalid, we can refresh them just before returning data to the user. The third
opportunity for refresh is not detected but is forced through periodic update of rows
known to be invalid. This method alone is not enough to ensure cache correctness, but in
conjunction with the first two methods it can help reduce the user-visible lag of
refreshing invalid rows.

Figure 14-2. Timeline of refresh opportunities

Before discussing in detail how to decide which refresh scheme is best for which
circumstances, we need to clarify how, in the latter two refresh schemes, you would
know whether a record is invalid or not. We’ve already seen how the expiry column
can be used for this purpose for records with a time dependency. We need an analogous
way to know when rows which we chose not to refresh at the time of invalidation are
indeed invalid. This is where the dirty column, which we created in our initial
snapshot, comes into play.

Example 8 shows a new method, movie_showtimes_invalidate_row, which
sets the dirty column of a particular row to true. For triggered events where we decide
not to call the expensive refresh function immediately, we can instead call this method,
which runs in O(1) time. Now our second and third refresh opportunities – just before

Draft for Preview Only. Copyright ©2008 O’Reilly Media Inc.

12

returning results to a user and the periodic refresh sweep – can check that a row is either
dirty or has expired, and refresh only those rows.

Example 14-8. A function to mark a materialized view row as invalid

create or replace function movie_showtimes_invalidate_row(
 id integer
) returns void
security definer
language 'plpgsql' as $$
declare
 n_updates integer;
begin
 update movie_showtimes_with_current_and_sold_out_and_dirty_and_expiry ms
 set dirty = true
 where ms.id = id;
 return;
end
$$;

There are a number of considerations that go into choosing when to refresh. The first
way of looking at the problem is in terms of who should pay the price. If you can split
your users into two classes, admin users who are making the most changes to data, and
customers, who are viewing that data, then the choice is clear. You’re paying for
customers and your employees are being paid to do their jobs, so the burden of update
should in general be on the employee’s shoulders.

However, in some cases the relationships between the tables themselves plays a role in
determining whether it’s appropriate to refresh immediately – while the actor is waiting –
or to defer the burden to the viewer or the periodic sweeper. These relationships fall into
three categories: 1:1 (“one to one”), 1:N, and N:1.

1:1 updates

In the first category, 1:1, every row you update in a base table corresponds to a unique
row in the view. The most obvious example is the table from which the view gets its
primary key, in this case movie_showtimes. If you update five records in the
movie_showtimes table, five records change in the view and thus five records need to
be refreshed or invalidated in the materialized view.

In this case, it usually makes sense to refresh the row in question right away, especially if
only employees have the ability to invalidate the data. The additional time spent by the
employee translates directly into time saved when rendering pages for your users.

1:N updates

For the second category, 1:N, an update of a single row in one of the base tables changes
multiple rows in the view. For example, if we make a change to a movie or theatre, all of
rows for that movie or theatre change in our view. An update to a single row could
require 100, 1000, or even more refreshes or invalidations in the materialized view.

In this case, it’s not obvious whether you should refresh rows immediately, or invalidate
them for a deferred refresh. Clearly, refreshing so many rows at once could seem beyond
reasonable, even for someone on payroll. The statement, “They don’t pay me enough for
this @!#%!” comes to mind. Factors affecting this decision are the number of rows
likely to be invalidated at once, how many of these invalid rows are likely to be requested
in a single request by a user, and how patient your employees are. If many rows are

Draft for Preview Only. Copyright ©2008 O’Reilly Media Inc.

13

invalidated, but they’re requested by visitors one by one, it may make sense to have your
site’s visitors pay one row at a time rather than force employees to sit around waiting for
a thousand records from a complex view to be refreshed. In the proceeding discussion of
the reconciler view, we’ll see how we can limit request-time refreshes to only to those
records that are being requested.

N:1 updates

Finally, in N:1 relationships, a number of updates to some base table corresponds to just a
single row in the view. This type of relationship is generally found in aggregate
functions. For example, in our view, each showtime record has a count of the number of
tickets purchased in the tickets_purchased_count column. Whether we add 10
tickets to an order for a given showtime (one row per ticket), delete ten tickets, or modify
each of those tickets in some way, only one row in the view changes, and therefore only
one record in the materialized view needs to be updated.

In this case, it is cruel and unusual to have the actor, generally your employees, pay the
price of refresh N times when there is only one change to be made to the materialized
view. Because each base table modification results in a trigger firing, if that trigger calls
the complex refresh function, you will pay for the refresh function N times before the
transaction is complete. Clearly, the result of refreshing once after all modifications are
made is the same as refreshing N times, except that the latter case is a waste of time and
more importantly, database resources. Therefore in this case the triggers related to N:1
relationships should invalidate materialized view rows for deferred refresh rather than
perform the refresh in place. The cost to invalidate is negligible, and the heavier cost of
refreshing need happen only once.

Triggered Refreshes and Invalidations
So far we have built a snapshot of our view at a given point in time, and we have created
stored procedures that can be used to invalidate and to refresh rows in the materialized
view snapshot. Now it’s time to build triggers that will refresh or invalidate rows
automatically as changes are made to underlying tables.

In general, triggers follow these steps:

1. Determine if any change to the materialized view is necessary, and quit early if not.

2. Determine which rows, by primary key, need to be refreshed or invalidated.

3. Call the refresh or invalidate function on those primary keys.

Writing these triggers can be a tedious process, because we need to account for inserts,
updates, and deletes on all tables that make up the view. In this case, nearly all of our
tables – six – are involved in the view in some way. With three functions per table for
each of insert, update, and delete, this could mean we need to write eighteen trigger
functions. Luckily, with some proper analysis, we can eliminate the need for more than
half of these.

To facilitate this analysis, we create a reference table as shown in Table 1. We list each
table involved in the view. For each table, we determine its relationship to the view: 1:1,
1:N, or N:1. Then, for each operation on the table, we first determine whether any action
is needed at all, and if so, we choose whether we will refresh immediately, or defer the

Draft for Preview Only. Copyright ©2008 O’Reilly Media Inc.

14

refresh by performing an invalidation operation. We’ll examine each table in turn to see
how we came up with the entries in this table.

Table 14-1. A summary of view base tables and how they relate to
invalidation or refresh

Table Relationship
to view

Operation Action
Needed?

Refresh Invalidation

insert

update

movies

1:N

delete

insert

update

theatres

1:N

delete

insert

update

movie_showtimes

1:1

delete

insert

update

orders

N:1

delete

insert

update

ticket_purchases

N:1

delete

insert

update

auditoriums

1:N

delete

Movie Showtimes

As we’ve already discussed, the movie_showtimes table shares its primary key with
the view, and therefore has a 1:1 correspondence. When a new showtime record is
inserted, we need to add that record to the materialized view. When a record is deleted,
we need to delete the record. And when a record is updated, we need to update the
corresponding record.

Example 11 shows three functions to handle each case of update, insert, and delete.
There are three new features of PL/pgSQL relating to trigger functions worth noting here.

First, functions intended to be used in conjunction with table triggers must have a return
type trigger.

Second, functions called from triggers can implicitly receive two parameters: old and
new. On an update, both of these are present, and old refers to the record before the

Draft for Preview Only. Copyright ©2008 O’Reilly Media Inc.

15

update, and new refers to the record after the update. On an insert, only new is provided,
and on delete, only old.

Finally, we have used the keyword perform in our trigger functions. perform is used
when you don’t intend to store the result of a select statement. In these cases, you replace
the keyword select with perform.

Note that in general, updates are a special case. If the record changes in a way where the
referenced primary key changes, we need to take action on both the old and new primary
key.

Also note that the method names follow a particular pattern. First, we prefix them in a
way that identifies the materialized view they are for: ms_mv_ for “movie showtimes
materialized view.” Then we identify the table this trigger function is for, here
showtime as a shortened version of movie_showtimes. Finally, we append to the
function name an identifier of whether this is the insert, update, or delete trigger with
_it, _ut, or _dt, respectively. This pattern will be followed for all tables and triggers.

Example 14-9. Triggers functions for the movie_showtimes table

create or replace function ms_mv_showtime_ut() returns trigger
security definer language 'plpgsql' as $$
begin
 if old.id = new.id then
 perform movie_showtimes_refresh_row(new.id);
 else
 perform movie_showtimes_refresh_row(old.id);
 perform movie_showtimes_refresh_row(new.id);
 end if;
 return null;
end
$$;

create or replace function ms_mv_showtime_dt() returns trigger
security definer language 'plpgsql' as $$
begin
 perform movie_showtimes_refresh_row(old.id);
 return null;
end
$$;

create or replace function ms_mv_showtime_it() returns trigger
security definer language 'plpgsql' as $$
begin
 perform movie_showtimes_refresh_row(new.id);
 return null;
end
$$;

The naming convention above intended to help you identify which function is for what
purpose, but from the database’s perspective, these are just arbitrary names. For each
function, we also need to add a corresponding trigger to the table itself so that the
database knows which method to call when each particular event occurs. Example 12
shows how we add these triggers.

Example 14-10. Actual trigger declaration for the movie_showtimes table

Draft for Preview Only. Copyright ©2008 O’Reilly Media Inc.

16

create trigger ms_mv_showtime_ut after update on movie_showtimes
 for each row execute procedure ms_mv_showtime_ut();

create trigger ms_mv_showtime_dt after delete on movie_showtimes
 for each row execute procedure ms_mv_showtime_dt();

create trigger ms_mv_showtime_it after insert on movie_showtimes
 for each row execute procedure ms_mv_showtime_it();

Movies

The movies table, as noted previously, has a 1:N correspondence with our view. A
change to a single movie affects all of the showtime records associated with that movie.
Our trigger function must select a column of showtime ids for refresh. Because only an
employee could change a movie record, an immediate refresh was chosen rather than an
invalidation, which would make users viewing the site pay for the refresh.

Because a movie has no impact on our view until it has showtimes, we do not need a
trigger on insert or delete of a movie. On insert, there can be no showtime records yet for
that movie. On delete, there can be no records because the referential integrity constraint
which guarantees that a showtime reference a valid movie. All of the
movie_showtimes records would have already been deleted or updated to reference a
different movie before a delete on movies could succeed, and the refreshes triggered
after modifications to that table would have cleared all of the records from the
materialized view.

Example 14-11. Triggers for the movies table

create or replace function ms_mv_movie_ut() returns trigger
security definer language 'plpgsql' as $$
begin
 if old.id = new.id then
 perform movie_showtimes_refresh_row(ms.id)
 from movie_showtimes ms
 where ms.movie_id = new.id;
 else
 perform movie_showtimes_refresh_row(ms.id)
 from movie_showtimes ms
 where ms.movie_id = old.id;
 perform movie_showtimes_refresh_row(ms.id)
 from movie_showtimes ms
 where ms.movie_id = new.id;
 end if;
 return null;
end
$$;

create trigger ms_mv_movie_ut after update on movie_showtimes
 for each row execute procedure ms_mv_movie_ut();

Theatres

Our treatment of the theatres table exactly matches the treatment of movies. The
theatres table also has a 1:N correspondence, so our trigger function must select a column

Draft for Preview Only. Copyright ©2008 O’Reilly Media Inc.

17

of showtime ids for refresh. Just as with the movies table, referential integrity
constraints prevent a theatre from being deleted while showtimes reference it, so we do
not need a delete trigger function. Similarly, when a theatre record is first inserted, it has
no showtimes and therefore cannot impact the view. Our single update trigger function is
defined in Example 12.

Example 14-12. Triggers for the theatres table

create or replace function ms_mv_theatre_ut() returns trigger
security definer language 'plpgsql' as $$
begin
 if old.id = new.id then
 perform movie_showtimes_refresh_row(ms.id)
 from movie_showtimes ms
 where ms.theatre_id = new.id;
 else
 perform movie_showtimes_refresh_row(ms.id)
 from movie_showtimes ms
 where ms.theatre_id = old.id;
 perform movie_showtimes_refresh_row(ms.id)
 from movie_showtimes ms
 where ms.theatre_id = new.id;
 end if;
 return null;
end
$$;

create or replace trigger ms_mv_theatre_ut after update on theatres
 for each row execute procedure ms_mv_theatre_ut();

Orders

The orders table has an interesting relationship with the materialized view. It does not
directly affect the view at all, but the records in purchased_tickets, which are
linked to the movie_showtimes table through the orders table, do. Therefore,
adding or removing an order record has no effect on the view, but a modification to the
order which would alter the showtime it is for – and transitively its associated tickets –
does have an effect. Therefore, we need only an update function, and we only need to
perform the refreshes or invalidations if the movie_showtime_id foreign key
reference changes. Any other changes have no affect on the view. In this case, we have
chosen to invalidate the row.

Example 14-13. Triggers for the orders table

create or replace function ms_mv_orders_ut() returns trigger
security definer language 'plpgsql' as $$
begin
 if old.movie_showtime_id != new.movie_showtime_id then
 perform movie_showtimes_invalidate_row(old.movie_showtime_id);
 perform movie_showtimes_invalidate_row(new.movie_showtime_id);
 end if;
 return null;
end
$$;

create trigger ms_mv_orders_ut after update on orders

Draft for Preview Only. Copyright ©2008 O’Reilly Media Inc.

18

 for each row execute procedure ms_mv_orders_ut();

Purchased Tickets

Ticket purchases impact the purchased_ticket_count column of the view, but
only the presence or absence of any given row is relevant. Therefore, we certainly need
an insert and delete trigger for the purchased_tickets table. We do also need an
update trigger, but it is constrained to take action only if there is a possibility that the tally
for the ticket needs to be moved from one showtime to another. This is only possible if
the ticket purchase is re-associated with a different order, which might be for a different
showtime. Therefore, the update trigger takes action conditionally based on whether the
order_confirmation_code foreign key column undergoes a change.

Because ticket purchases have an N:1 relationship with a showtime in our view – all the
purchases for a showtime are counted and affect a single column in a single record – we
call the invalidation function in our triggers rather than the refresh function. If ten tickets
are purchased, we want to refresh only once, not ten times, since the end result is simply
to increase the purchased_tickets_count column by ten. Calling the refresh
function ten times to increment the count one ticket at a time is a waste of time and
resources.

Example 14-14. Triggers for the purchased_tickets table

create or replace function ms_mv_ticket_ut() returns trigger
security definer language 'plpgsql' as $$
begin
 if old.order_confirmation_code != new.order_confirmation_code then
 perform movie_showtimes_invalidate_row(o.movie_showtime_id)
 from orders o
 where o.confirmation_code = new.order_confirmation_code;
 perform movie_showtimes_invalidate_row(o.movie_showtime_id)
 from orders o
 where o.confirmation_code = old.order_confirmation_code;
 end if;
 return null;
end
$$;

create or replace function ms_mv_ticket_dt() returns trigger
security definer language 'plpgsql' as $$
begin
 perform movie_showtimes_invalidate_row(o.movie_showtime_id)
 from orders o
 where o.confirmation_code = old.order_confirmation_code;
 return null;
end
$$;

create or replace function ms_mv_ticket_it() returns trigger
security definer language 'plpgsql' as $$
begin
 perform movie_showtimes_invalidate_row(o.movie_showtime_id)
 from orders o
 where o.confirmation_code = new.order_confirmation_code;
 return null;

Draft for Preview Only. Copyright ©2008 O’Reilly Media Inc.

19

end
$$;

create trigger ms_mv_ticket_ut after update on purchased_tickets
 for each row execute procedure ms_mv_ticket_ut();

create trigger ms_mv_ticket_dt after delete on purchased_tickets
 for each row execute procedure ms_mv_ticket_dt();

create trigger ms_mv_ticket_it after insert on purchased_tickets
 for each row execute procedure ms_mv_ticket_it();

Hiding the Implementation with the
Reconciler View
Now that we have our triggers defined, we have added yet another way for the
materialized view to decay. The first decay mechanism was the expiry column, which
allows rows to declare when they should be treated as irrelevant. The second mechanism
is the dirty column, which our invalidation function sets to true when certain tables
receive updates.

Slowly but surely, our materialized view will become a minefield full of stale records we
need to avoid if we aim to present accurate data to database clients. Such a table is by
no means a drop-in replacement for the original view. Not only is the materialized view
slowly turning into garbage, but also the interface is different. If selecting directly from
this table, a client must be careful to avoid stale or invalid rows. The logic that was
neatly contained within the view’s where clause filters is now contained in columns,
which the client must explicitly filter on.

We will now plug up these holes, first ensuring that the data returned to clients is always
up-to-date. Then we’ll give back to the client the original interface provided by the
original view. We’ll hide the dirty and expiry columns, and transform the
current and sold_out columns back into a filter.

We accomplish the first goal of always returning accurate data with the reconciler view.
We give this view the same name as our original, “well formed” view from Example 2,
but without the suffix _unmaterialized. It is simply called
movie_showtimes_with_current_and_sold_out. This new view is shown
in Example 15. It is the union of two select statements. The first returns rows from our
physical materialized view table which are neither dirty nor expired.

The second part of this view contains the magic. It returns records that look like data
from the materialized view, complete with a false dirty column, and an accurate expiry
time. Recall when we built our refresh function in Example 7, we constructed it so that it
would return the expiry time of the new row being inserted. That was not without
purpose; we make use of that behavior here to create a complete yet functional façade for
the materialized view, which hides the mixture of accurate, expired, and dirty rows.
When we call the refresh function, it both fills in the expiry column accurately, but more
importantly, it refreshes the expired or dirty row.

This is as close as we get in this book to pure magic. The process of requesting rows
from the reconciler view refreshes the expired rows in the materialized view. The

Draft for Preview Only. Copyright ©2008 O’Reilly Media Inc.

20

reconciler view, then, that is nearly our end-state view. Although it does have two
additional columns that our original view did not have – expiry and dirty – it is
essentially a drop-in replacement for the view we started out with in Example 2, as it is
always accurate.

Example 14-15. The reconciler view provides just-in-time cache-correctness

create or replace view movie_showtimes_with_current_and_sold_out as
select *
 from movie_showtimes_with_current_and_sold_out_and_dirty_and_expiry
 where dirty is false
 and (expiry is null or expiry > now())
 union all
select *,
 false,
 movie_showtimes_refresh_row(w.id)
 from movie_showtimes_with_current_and_sold_out_unmaterialized w
 where id in (select id
 from movie_showtimes_with_current_and_sold_out_and_dirty_and_expiry
 where dirty is true
 or not(expiry is null or now() <= expiry));

In the reconciler view, we use union all rather than union. A
SQL union returns only unique rows. To do so, the result rows must
be first be sorted, followed by a unique operation to filter out any
duplicate rows. Since we aren’t expecting any duplicate rows, using
unique can be much more efficient if we’re requesting a large
number of rows from the reconciler view at once.

You may have noticed that the way we implemented the reconciler view, with it’s
selection from the unmaterialized view and a call to the refresh function for each invalid
row, actually evaluates the unmaterialized view twice for each invalid row that needs to
be updated. This is unfortunate, but is still a vast improvement over an evaluation of the
unmaterialized view for every page request. Of course, nothing is impossible, and
therefore writing a reconciler view that does not evaluate the unmaterialized view twice
is not impossible. However, such an implementation is beyond the scope of this book,
and strays from our purpose here: that is, the fundamentals of materialization and cache
correctness. A more complete materialized view implementation is available at this
book’s web site, located at http://enterpriserails.chak.org.

You may also be wondering, when you select from the reconciler view, how many rows
are refreshed? Are all of the expired and invalid rows refreshed, which could be quite
costly, or just the ones that influence the query? In fact, it is the latter. Example 16
shows a set of SQL queries to illustrate this. First, two rows in the materialized view are
manually set to be dirty. Then, one of those rows is requested from the reconciler view.
Finally, the dirty column of both rows is selected directly from the materialized view.
Only the one we selected from the reconciler view has been refreshed, and it now has a
false value in the dirty column.

This property of the reconciler view plays a big role when you’re choosing between
invalidation or refresh for 1:N table relationships. If it’s common for rows to be selected
from the materialized view in small chunks rather than all at once, you can amortize the
full refresh of a 1:N invalidation over a number of future site visitors. Alternatively, the
user who invalidated the rows – often an employee – must pay the price of refreshing N
rows all at once.

Draft for Preview Only. Copyright ©2008 O’Reilly Media Inc.

21

Example 14-16. When selecting from the reconciler view, you only pay for refreshing the
rows you select

movies_development=#
 update movie_showtimes_with_current_and_sold_out_and_dirty_and_expiry
 set dirty = true
 where id in (1, 2);
UPDATE 2

movies_development=#
 select *
 from movie_showtimes_with_current_and_sold_out
 where id = 1;
(1 row)

movies_development=#
 select id, dirty
 from movie_showtimes_with_current_and_sold_out_and_dirty_and_expiry
 where id in (1, 2);
 id | dirty
----+-------
 2 | t
 1 | f
(2 rows)

Periodic refreshes

In Figure 1, I alluded to a periodic refresh activity. Now that we have seen the reconciler
view, such an activity is trivial to implement. That activity is simply the variation on the
bolded portion of the reconciler view in Example 15. We simply need to select the
refresh function on all of the rows that are expired or dirty. This can run via a cron job at
a given internal to alleviate some of the burden imposed on site visitors whose requests
go through the reconciler view. If the refresh function is called between an invalidation
operation (either explicit or implicit due to an expiration date passing) and a request, then
cron pays rather than the next visitor.

Example 14-17. A refresh function to be run periodically

select movie_showtimes_refresh_row(w.id)
 from movie_showtimes_with_current_and_sold_out_and_dirty_and_expiry w
where dirty is true
 or not(expiry is null or now() <= expiry));

Completing the circle

Our reconciler view, although it is a nearly identical drop-in replacement for our well-
formed view from Example 2, is not the same as the view we began with in Example 1,
current_movie_showtimes.

At this point, it is not hard to create a new view with the same name that has the same
output, but is based on the materialized view. We just request all rows except dirty and
expiry from the reconciler view. We also omit our Boolean columns from the new view,
and instead we use them as filters. Example 18 shows the new definition of our original
view. Now we’ve come full circle.

Draft for Preview Only. Copyright ©2008 O’Reilly Media Inc.

22

Example 14-18. A view indistinguishable from our original
current_movie_showtimes view, but based off the reconciler view.

create view current_movie_showtimes as
 select name,
 rating_id,
 length_minutes,
 id,
 movie_id,
 theatre_id,
 room,
 start_time,
 theatre_name,
 zip_code,
 latitude,
 longitude,
 seats_available,
 purchased_tickets_count
 from movie_showtimes_with_current_and_sold_out
 where current is true and sold_out is false;

Figure 3 shows the progression of views, tables, and wrapper views we created to
completely hide the implementation of our materialized view from clients.

Cache Indexes
Our materialized view implementation is actually rather useless if we do not add indexes.
Although we don’t need to evaluate the complex view query when we query the
materialized view, without indexes, each request would need to run a full table scan in
order to return any results. Indexing makes queries by id, or by one of our original filters
close to instantaneous.

There is a minimal set of indexes we need on a materialized view. First, we need to
index the primary key column. It’s fine to do this by creating an explicit primary key.
Next, we need to add indexes on the dirty and expiry columns, since they are part of
the where clause of the reconciler view. Indexing these columns keeps that part of our
implementation fast. Finally, we should index the filters that we recast as columns,
current and sold_out, since it’s likely we’ll be filtering on these columns
frequently. Apart from this set – the primary key, the invalidation implementation
columns, and the filter columns, you can index any columns in your materialized view
that your application will select or filter on. The creation of our primary key and indexes
is shown in Example 19.

Example 14-19. A minimal set of indices on a materialized view

alter table movie_showtimes_with_current_and_sold_out_and_dirty_and_expiry add
primary key (id);

create index movie_showtimes_with_current_and_sold_out_dirty_expiry_idx
 on movie_showtimes_with_current_and_sold_out_and_dirty_and_expiry(dirty, expiry);

create index movie_showtimes_with_current_and_sold_out_current_idx
 on movie_showtimes_with_current_and_sold_out_and_dirty_and_expiry(current);

create index movie_showtimes_with_current_and_sold_out_sold_out_idx
 on movie_showtimes_with_current_and_sold_out_and_dirty_and_expiry(sold_out);

Draft for Preview Only. Copyright ©2008 O’Reilly Media Inc.

23

Figure 14-3. The progression of views and tables to abstract the
materialized view implementation from clients

Results
The results of using a materialized view rather than an unmaterialized one are quite
impressive. In Example 20, a select from both for current, non-sold out showtimes is
analyzed.

First, the count of records in each table is selected to give you an idea of how much data
we are dealing with. In fact, it is not too much data compared to what a real production
site selling tickets for all theatres and all movies nationally might have in its database.
Our data set likely accounts for a day or at most a week’s worth of accumulated data on a
real system.

Next, we select all of the current, non sold out showtimes from the unmaterialized view.
On a Dual Core 2.1 Ghz MacBook Pro, the query takes 1.16 seconds. Next we issue the
same select against the materialized view. It takes 0.013 seconds. With this dataset,

Draft for Preview Only. Copyright ©2008 O’Reilly Media Inc.

24

Selecting from the materialized view is almost 100 times faster. As the dataset grows,
the time required to select from the unmaterialized view continues to grow, while the
time to request from the materialized view remains nearly constant.

Example 14-20. Comparison of runtimes on a view versus a materialized view

movies_development=# select (select count(*) from movies) as movies,
 (select count(*) from theatres) as theatres,
 (select count(*) from movie_showtimes) as showtimes,
 (select count(*) from orders) as orders,
 (select count(*) from purchased_tickets) as tickets;
 movies | theatres | showtimes | orders | tickets
--------+----------+-----------+--------+---------
 44 | 6 | 20201 | 218593 | 218591
movies_development=# explain analyze
 select id
 from movie_showtimes_with_current_and_sold_out_unmaterialized
 where current = true
 and sold_out = false;
Total runtime: 1158.617 ms

movies_development=# explain analyze
 select id
 from movie_showtimes_with_current_and_sold_out
 where current = true
 and sold_out = false;
Total runtime: 12.553 ms

Cascading Caches
In Example 2, we joined against a named query subselect to create our view. We noted
that this query could also be recast as a fully-fledged view in its own right. By extension,
it could also be recast as a materialized view.

If that were the case, we would be cascading two materialized views. The inner
materialized view would be concerned with orders and ticket purchases, and the outer
view would no longer need to watch those tables directly. Instead, the outer materialized
view would maintain triggers on the inner materialized view.

Working this way can reduce the complexity of any given materialized view. It also
speeds up the inner view, for cases where there are other uses for that data.
Implementing a cascading materialized view is left as an exercise.

Exercises
1. Write a stored procedure that verifies a one-to-one correspondence between rows in

the materialized “reconciler” view and the unmaterialized view.

2. Using the stored procedure from Exercise 1, write a series of unit tests that modify

records – one at a time as well as multiple at a time – and then assert the validity of

the reconciler view.

3. It was noted that our refresh function does extra work to calculate and return the

expiry value. Write a new movie_showtime_expiry stored procedure that

Draft for Preview Only. Copyright ©2008 O’Reilly Media Inc.

25

takes the start_time as a parameter, and returns an expiry value without

selecting from the unmaterialized view.

4. Rewrite the snapshot creation query and the refresh function to use the new

procedure you wrote in Exercise 3. Time the snapshot creation and refresh

operations with both methods. Which set is faster, and by how much?

5. Following the procedure outlined in this chapter, create a materialized view for ptc,

the named subquery from Example 2. Then, rewrite the triggers for the main

materialized view to use this new physical table. How do you propagate

invalidations?

