
Synchronous Log Shipping

Replication

Takahiro Itagaki and Masao Fujii

NTT Open Source Software Center

PGCon 2008

Copyright © 2008 NTT, Inc. All Rights Reserved. 2

Agenda

• Introduction: What is this?

– Background

– Compare with other replication solutions

• Details: How it works

– Struggles in development

• Demo

• Future work: Where are we going?

• Conclusion

What is this?

Copyright © 2008 NTT, Inc. All Rights Reserved. 4

What is this?

• Successor of warm-standby servers

– Replication system using WAL shipping.

• using Point-in-Time Recovery mechanism

– However, no data loss after failover because of
synchronous log-shipping.

• Based on PostgreSQL 8.2 with a patch and

including several scripts

– Patch: Add two processes into postgres

– Scripts: For management commands

WAL
Active Server Standby Server

Copyright © 2008 NTT, Inc. All Rights Reserved. 5

Warm-Standby Servers (v8.2~)

Commit

archive_command

Redo

WAL seg

Failover

Active Server (ACT) Standby Server (SBY)

1

2

4

Flush WAL to disk

The last segment is not

available in the standby server

if the active crashes before

archiving it.

We need to wait for remounting

active’s storage on the standby

server, or we wait the active’s

reboot.

WAL seg

(Return) 3

Sent after commits
Crash!

Copyright © 2008 NTT, Inc. All Rights Reserved. 6

Synchronous Log Shipping Servers

Commit

WAL records

Failover

1

2

3 Send WAL records

WAL entries are sent

before returning from

commits by records.

We can start the standby server

after redoing remaining segments;

We’ve received all transaction logs

already in it.

Redo

WAL seg

Segments are formed

from records in the

standby server.
Flush WAL to disk

(Return) 4

Crash!

Active Server (ACT) Standby Server (SBY)

Copyright © 2008 NTT, Inc. All Rights Reserved. 7

Background: Why new solution?

• We have many migration projects from Oracles

and compete with them with postgres.

– So, we hope postgres to be SUPERIOR TO ORACLE!

• Our activity in PostgreSQL 8.3

– Performance stability

• Smoothed checkpoint

– Usability; Ease to tune server parameters

• Multiple autovacuum workers

• JIT bgwriter – automatic tuning of bgwriter

•Where are alternatives of RAC?
– Oracle Real Application Clusters

Copyright © 2008 NTT, Inc. All Rights Reserved. 8

Background: Alternatives of RAC

• Oracle RAC is a multi-purpose solution

– … but we don’t need all of the properties.

• In our use:

– No downtime <- Very Important

– No data loss <- Very Important

– Automatic failover <- Important

– Performance in updates <- Important

– Inexpensive hardware <- Important

– Performance scalability <- Not important

• Goal

– Minimizing system downtime

– Minimizing performance impact in updated-workloads

Copyright © 2008 NTT, Inc. All Rights Reserved. 9

Compare with other replication solutions

SQLMediumGood

Auto,

Hard to

re-attach

NGOKpgpool-II

AsyncNoManualOKNG

OK

NG

OK

No data

loss

OK

OK

OK

No SQL

restriction

Auto, Slow

Manual

Auto, Fast

Failover

No

Good

No

Performance

scalability

Good

Async

Good

Update

performance

Disk

Trigger

Log

How to

copy?

warm-standby

Shared Disks

Slony-I

Log Shipping

• Log Shipping is excellent except performance scalability.

• Also, Re-attaching a repaired server is simple.

– Just same as normal hot-backup procedure

• Copy active server’s data into standby and just wait for WAL replay.

– No service stop during re-attaching

Copyright © 2008 NTT, Inc. All Rights Reserved. 10

Compare downtime with shared disks

• Cold standby with shared disks is an alternative solution

– but it takes long time to failover in heavily-updated load.

– Log-shipping saves time for mounting disks and recovery.

10 sec

to detect

server down

5 sec

to recover

the last

segement

20 sec

to umount

and remount

shared disks

60 ~ 180 sec (*)

to recover

from the last

checkpoint

Shared disk system

Log-shipping system

Crash!

Crash! Ok, the service is restarted!

(*) Measured in PostgreSQL 8.2.

8.3 would take less time because

of less i/o during recovery.

Copyright © 2008 NTT, Inc. All Rights Reserved. 11

Advantages and Disadvantages

• Advantages

– Synchronous

• No data loss on failover

– Log-based (Physically same structure)

• No functional restrictions in SQL

• Simple, Robust, and Easy to setup

– Shared-nothing

• No Single Point of Failure

• No need for expensive shared disks

– Automatic Fast Failover (within 15 seconds)

• “Automatic” is essential not to wait human operations

– Less impact against update performance (less than 7%)

• Disadvantages

– No performance scalability (for now)

– Physical replication. Cannot use for upgrading purposes.

Copyright © 2008 NTT, Inc. All Rights Reserved. 12

Where is it used?

• Interactive teleconference management package

– Commercial service in active

– Manage conference booking and file transfer

– Log-shipping is an optional module for users requiring

high availability

Communicator
Internet networks

How it works

Copyright © 2008 NTT, Inc. All Rights Reserved. 14

System overview

• Based on PostgreSQL 8.2, 8.3(under porting)

• WALSender
– New child process of postmaster

– Reads WAL from walbuffers and sends WAL to WALReceiver

• WALReceiver
– New daemon to receive WAL

– Writes WAL to disk and communicates with startup process

• Using Heartbeat 2.1
– Open source high-availability software manages the resources via resource agent(RA)

– Heartbeat provides a virtual IP(VIP)

WALSender WALReceiver

Heartbeat Heartbeat

WAL

WAL

startup

DB

postgresWAL

DB

wal
buffers

RA RA

PostgreSQL PostgreSQL

Active Standby

VIP

Copyright © 2008 NTT, Inc. All Rights Reserved. 15

System overview

• Based on PostgreSQL 8.2, 8.3(under porting)

• WALSender
– New child process of postmaster

– Reads WAL from walbuffers and sends WAL to WALReceiver

• WALReceiver
– New daemon to receive WAL

– Writes WAL to disk and communicates with startup process

• Using Heartbeat 2.1
– Open source high-availability software manages the resources via resource agent(RA)

– Heartbeat provides a virtual IP(VIP)

WALSender WALReceiver

Heartbeat Heartbeat

WAL

WAL

startup

DB

postgresWAL

DB

wal
buffers

RA RA

PostgreSQL PostgreSQL

Active Standby

VIP

In our replicator, there are two

nodes, active and standby

Copyright © 2008 NTT, Inc. All Rights Reserved. 16

System overview

• Based on PostgreSQL 8.2, 8.3(under porting)

• WALSender
– New child process of postmaster

– Reads WAL from walbuffers and sends WAL to WALReceiver

• WALReceiver
– New daemon to receive WAL

– Writes WAL to disk and communicates with startup process

• Using Heartbeat 2.1
– Open source high-availability software manages the resources via resource agent(RA)

– Heartbeat provides a virtual IP(VIP)

WALSender WALReceiver

Heartbeat Heartbeat

WAL

WAL

startup

DB

postgresWAL

DB

wal
buffers

RA RA

PostgreSQL PostgreSQL

Active Standby

VIP

In the active node, postgres is

running in normal mode with new

child process WALSender

Copyright © 2008 NTT, Inc. All Rights Reserved. 17

System overview

• Based on PostgreSQL 8.2, 8.3(under porting)

• WALSender
– New child process of postmaster

– Reads WAL from walbuffers and sends WAL to WALReceiver

• WALReceiver
– New daemon to receive WAL

– Writes WAL to disk and communicates with startup process

• Using Heartbeat 2.1
– Open source high-availability software manages the resources via resource agent(RA)

– Heartbeat provides a virtual IP(VIP)

WALSender WALReceiver

Heartbeat Heartbeat

WAL

WAL

startup

DB

postgresWAL

DB

wal
buffers

RA RA

PostgreSQL PostgreSQL

Active Standby

VIP

In the standby node, postgres is running

in continuous recovery mode with new

daemon WALReceiver

Copyright © 2008 NTT, Inc. All Rights Reserved. 18

System overview

• Based on PostgreSQL 8.2, 8.3(under porting)

• WALSender
– New child process of postmaster

– Reads WAL from walbuffers and sends WAL to WALReceiver

• WALReceiver
– New daemon to receive WAL

– Writes WAL to disk and communicates with startup process

• Using Heartbeat 2.1
– Open source high-availability software manages the resources via resource agent(RA)

– Heartbeat provides a virtual IP(VIP)

WALSender WALReceiver

Heartbeat Heartbeat

WAL

WAL

startup

DB

postgresWAL

DB

wal
buffers

RA RA

PostgreSQL PostgreSQL

Active Standby

VIP

In order to manage these resources,

there is heartbeat in both nodes

Copyright © 2008 NTT, Inc. All Rights Reserved. 19

System overview

• Based on PostgreSQL 8.2, 8.3(under porting)

• WALSender
– New child process of postmaster

– Reads WAL from walbuffers and sends WAL to WALReceiver

• WALReceiver
– New daemon to receive WAL

– Writes WAL to disk and communicates with startup process

• Using Heartbeat 2.1
– Open source high-availability software manages the resources via resource agent(RA)

– Heartbeat provides a virtual IP(VIP)

WALSender WALReceiver

Heartbeat Heartbeat

WAL

WAL

startup

DB

postgresWAL

DB

wal
buffers

RA RA

PostgreSQL PostgreSQL

Active Standby

VIP

Copyright © 2008 NTT, Inc. All Rights Reserved. 20

WALSender

Update

Active

postgres WALSenderwalbuffers

Insert

Commit
Flush

WAL

Request

Read

Send / Recv

(Return)

(Return)

Copyright © 2008 NTT, Inc. All Rights Reserved. 21

WALSender

Update

Active

postgres WALSenderwalbuffers

Insert

Commit
Flush

WAL

Request

Read

Send / Recv

(Return)

(Return)

XLogInsert()

Update command triggers XLogInsert()

and inserts WAL into walbuffers

Copyright © 2008 NTT, Inc. All Rights Reserved. 22

WALSender

Update

Active

postgres WALSenderwalbuffers

Insert

Commit
Flush

WAL

Request

Read

Send / Recv

(Return)

(Return)

XLogInsert()

XLogWrite()

Commit command triggers

XLogWrite() and flushs WAL to disk

Copyright © 2008 NTT, Inc. All Rights Reserved. 23

WALSender

Update

Active

postgres WALSenderwalbuffers

Insert

Commit
Flush

WAL

Request

Read

Send / Recv

(Return)

(Return)

XLogInsert()

XLogWrite()

Changed

We changed XLogWrite() to request

WALSender to transfer WAL

Copyright © 2008 NTT, Inc. All Rights Reserved. 24

WALSender

Update

Active

postgres WALSenderwalbuffers

Insert

Commit
Flush

WAL

Request

Read

Send / Recv

(Return)

(Return)

XLogInsert()

XLogWrite()

Changed

WALSender reads WAL from

walbuffers and transfer them

After transfer finishes, commit

command returns

Copyright © 2008 NTT, Inc. All Rights Reserved. 25

WALReceiver

Recv / Send

WALReceiver startup

Flush

Inform

Read

Standby

WAL Disk

Replay

Copyright © 2008 NTT, Inc. All Rights Reserved. 26

WALReceiver

Recv / Send

WALReceiver startup

Flush

Inform

Read

Standby

WAL Disk

Replay

WALReceiver receives WAL from

WALSender and flushes them to disk

Copyright © 2008 NTT, Inc. All Rights Reserved. 27

WALReceiver

Recv / Send

WALReceiver startup

Flush

Inform

Read

Standby

WAL Disk

Replay

WALReceiver informs startup

process of the latest LSN.

Copyright © 2008 NTT, Inc. All Rights Reserved. 28

WALReceiver

Recv / Send

WALReceiver startup

Flush

Inform

Read

Standby

WAL Disk

Replay

ReadRecord()

Changed

Startup process reads WAL up to the latest LSN

and replays.

We changed ReadRecord() so that startup

process could communicate with WALReceiver

and replay by each WAL record.

Copyright © 2008 NTT, Inc. All Rights Reserved. 29

Why replay by each WAL record?

• Minimize downtime

• Shorter delay in read-only queries (at the standby)

shorter

a few records

WAL record

Our replicator

longer

the latest one segment

WAL segment

Warm-Standby

Delay in read-only queries

Needed to be replayed at failover

Replay by each

Our replicator

Warm-standby

WAL block

WAL which can be replayed now

WAL needed to be replayed at failover

segment1 segment2

Copyright © 2008 NTT, Inc. All Rights Reserved. 30

Why replay by each WAL record?

• Minimize downtime

• Shorter delay in read-only queries (at the standby)

shorter

a few records

WAL record

Our replicator

longer

the latest one segment

WAL segment

Warm-Standby

Delay in read-only queries

Needed to be replayed at failover

Replay by each

Our replicator

Warm-standby

WAL block

WAL which can be replayed now

WAL needed to be replayed at failover

segment1 segment2

In our replicator, because of replay by each WAL record,
the standby only has to replay a few records at failover

Copyright © 2008 NTT, Inc. All Rights Reserved. 31

Why replay by each WAL record?

• Minimize downtime

• Shorter delay in read-only queries (at the standby)

shorter

a few records

WAL record

Our replicator

longer

the latest one segment

WAL segment

Warm-Standby

Delay in read-only queries

Needed to be replayed at failover

Replay by each

Our replicator

Warm-standby

WAL block

WAL which can be replayed now

WAL needed to be replayed at failover

segment1 segment2

On the other hand, in warm-standby, because of

replay by each WAL segment, the standby has to
replay the latest one segment

Copyright © 2008 NTT, Inc. All Rights Reserved. 32

Why replay by each WAL record?

• Minimize downtime

• Shorter delay in read-only queries (at the standby)

shorter

a few records

WAL record

Our replicator

longer

the latest one segment

WAL segment

Warm-Standby

Delay in read-only queries

Needed to be replayed at failover

Replay by each

Our replicator

Warm-standby

WAL block

WAL which can be replayed now

WAL needed to be replayed at failover

segment1 segment2

In this example, warm-standby needed to

replay most 'segment2' at failover.

Copyright © 2008 NTT, Inc. All Rights Reserved. 33

Why replay by each WAL record?

• Minimize downtime

• Shorter delay in read-only queries (at the standby)

shorter

a few records

WAL record

Our replicator

longer

the latest one segment

WAL segment

Warm-Standby

Delay in read-only queries

Needed to be replayed at failover

Replay by each

Our replicator

Warm-standby

WAL block

WAL which can be replayed now

WAL needed to be replayed at failover

segment1 segment2

And, in our replicator, because of

replay by each WAL record, delay

in read-only queries is shorter

Copyright © 2008 NTT, Inc. All Rights Reserved. 34

Why replay by each WAL record?

• Minimize downtime

• Shorter delay in read-only queries (at the standby)

shorter

a few records

WAL record

Our replicator

longer

the latest one segment

WAL segment

Warm-Standby

Delay in read-only queries

Needed to be replayed at failover

Replay by each

Our replicator

Warm-standby

WAL block

WAL which can be replayed now

WAL needed to be replayed at failover

segment1 segment2

Therefore, we implemeted replay

by each WAL record

Copyright © 2008 NTT, Inc. All Rights Reserved. 35

Heartbeat and resource agent

• Heartbeat needs resource agent (RA) to manage
PostgreSQL(with WALSender) and WALReceiver as a
resource

• RA is an executable providing the following feature

check if the resource is running normallymonitor

stop the resourcesstop

change the status from active to standbydemote

change the status from standby to activepromote

start the resources as standbystart

DescriptionFeature

Heartbeat ResourcesRA

monitor

demotestop

promotestart

WALReceiver

PostgreSQL
(WALSender)

Invoke

Copyright © 2008 NTT, Inc. All Rights Reserved. 36

Failover

• Failover occurs when heartbeat detects that the active
node is not running normally

• After failover, clients can restart transactions only by
reconnecting to virtual IP provided by Heartbeat

Act
Detect

startup

Replay

ReadRecord()

Changed

Heartbeat

Request

Standby

At failover, heartbeat requests startup

process to finish WAL replay.

We changed ReadRecord() to deal with

this request.

Copyright © 2008 NTT, Inc. All Rights Reserved. 37

Failover

• Failover occurs when heartbeat detects that the active
node is not running normally

• After failover, clients can restart transactions only by
reconnecting to virtual IP provided by Heartbeat

Act
Detect

startup

Replay

ReadRecord()

Changed

Heartbeat

Request

Standby

After finishing WAL replay,

the standby becomes active

Struggles in development

Copyright © 2008 NTT, Inc. All Rights Reserved. 39

Downtime caused by the standby down

• The active down triggers a failover and causes downtime

• Additionally, the standby down might also cause downtime
– WALSender waits for the response from the standby after sending WAL

– So, when the standby down occurs, unless WALSender detects the
failure, WALSender is blocked

– i.e. WALSender keeps waiting for the response which never comes

• How to detect

– Timeout notification is needed to detect

– Keepalive, but it doesn't work occasionally on Linux (Linux bug!?)

– Original timeout

Commit

Send WAL

(Return)

Active

Wait

Standby

Blocked����

WALSender

Down!!

postgres

Request

(Return)

Copyright © 2008 NTT, Inc. All Rights Reserved. 40

Downtime caused by clients

• Even if the database finishes a failover immediately,

downtime might still be long by clients reason

– Clients wait for the response from the database

– So, when a failover occurs, unless clients detect a failover, they
can't reconnect to the new active and restart the transaction

– i.e. clients keeps waiting for the response which never comes

• How to detect

– Timeout notification is needed to detect

– Keepalive

• Our setKeepAlive patch was accepted in JDBC 8.4dev

– Socket timeout

– Query timeout

Active

Client

ActiveDown!!

We want to implement

these timeouts!!

Copyright © 2008 NTT, Inc. All Rights Reserved. 41

Split-brain

• High-availability clusters must be able to handle split-
brain

• Split-brain causes data inconsistency
– Both nodes are active and provide the virtual IP

– So, clients might update inconsistently each node

• Our replicator also causes split-brain unless the standby
can distinguish network failure from the active down

Active Active

If network failure are mis-detected as

the active down, the standby becomes

active even if the other active is still

running normally.

This is split-brain scenario.

StandbyActive

If the active down are mis-detected as

network failure, a failover doesn't start

even if the other active is down.

This scenario is also problem though

split-brain doesn't occur.

Down!!

Failure!!

Copyright © 2008 NTT, Inc. All Rights Reserved. 42

Split-brain

• How to distinguish

– Combining the following solution

1. Redundant network between two nodes

– The standby can distinguish unless all networks fail

2. STONITH(Shoot The Other Node In The Head)

– Heartbeat's default solution for avoiding split-brain

– STONITH always forcibly turns off the active when activating the

standby

– Split-brain doesn't occur because the active node is always only

one
Active

STONITH

Active

Turn off!!

Copyright © 2008 NTT, Inc. All Rights Reserved. 43

What delays the activation of the standby

• In order to activate the standby immediately, recovery

time at failover must be short!!

• In 8.2, recovery is very slow�

– A lot of WAL needed to be replayed at failover might be

accumulated

– Another problem: disk full failure might happen

• In 8.3, reocvery is fast☺

– Because of avoiding unnecessary reads

– But, there are still two problems

Copyright © 2008 NTT, Inc. All Rights Reserved. 44

What delays the activation of the standby

1. Checkpoint during recovery

– It took 1min or more (in the worst case) and occupied 21% of

recovery time

– What is worse is that WAL replay is blocked during checkpoint

• Because only startup process performs both checkpoint and WAL

replay

-> Checkpoint delays recovery...�

• [Just idea] bgwriter during recovery

– Leaving checkpoint to bgwriter, and making startup process

concentrate on WAL replay

Copyright © 2008 NTT, Inc. All Rights Reserved. 45

What delays the activation of the standby

2. Checkpoint at the end of recovery

– Activation of the standby is blocked during checkpoint

-> Downtime might take 1min or more...�

• [Just idea] Skip of the checkpoint at the end of recovery

– But, postgres works fine if it fails before at least one checkpoint

after recovery?

– We have to reconsider why checkpoint is needed at the end of

recovery

!!! Of course, because recovery is a critical part for DBMS,

more careful investigation is needed to realize these

ideas

Copyright © 2008 NTT, Inc. All Rights Reserved. 46

How we choose the node with the later LSN

• When starting both two nodes, we should synchronize

from the node with the later LSN to the other

– But, it's unreliable to depend on server logs (e.g. heartbeat log)

or a human memory in order to choose the node

• We choose the node from WAL which is most reliable

– Find the latest LSN from WAL files in each node by using our

original tool like xlogdump and compare them

Copyright © 2008 NTT, Inc. All Rights Reserved. 47

Bottleneck

• Bad performance after failover

– No FSM

– A little commit hint bits in heap tuples

– A little dead hint bits in indexes

Demo

Copyright © 2008 NTT, Inc. All Rights Reserved. 49

Demo

Environment

• 2 nodes, 1 client

How to watch

• there are two kind of terminals

• the terminal at the top of the screen displays the cluster status

• the other terminal is for operation
– Client

– Node0

– Node1

Node1

Client

Node0

The node with

• 3 lines is active

• 1 line is standby

• no line is not started yet

active

standby

Copyright © 2008 NTT, Inc. All Rights Reserved. 50

Demo

Operation

1. start only node0 as the active

2. createdb and pgbench -i (from client)

3. online backup

4. copy the backup from node0 to node1

5. pgbench -c2 -t2000

6. start node1 as the standby during pgbench ->

synchronization starts

7. killall -9 postgres (in active node0) -> failover occurs

Future work
- Where are we going? -

Copyright © 2008 NTT, Inc. All Rights Reserved. 52

Where are we going?

• We’re thinking to make it Open Source Software.
– To be a multi-purpose replication framework

– Collaborators welcome.

• TODO items
– For 8.4 development

• Re-implement WAL-Sender and WAL-Receiver as extensions
using two new hooks

• Xlogdump to be an official contrib module

– For performance
• Improve checkpointing during recovery

• Handling un-logged operations

– For usability
• Improve detection of server down in client library

• Automatic retrying abundant transactions in client library

Copyright © 2008 NTT, Inc. All Rights Reserved. 53

For 8.4 : WAL-writing Hook

• Purpose
– Make WAL-Sender to be one of general extensions

• WAL-Sender sends WAL records before commits

• Proposal
– Introduce “WAL-subscriber model”

– “WAL-writing Hook” enables to replace or filter WAL
records just before they are written down to disks.

• Other extensions using this hook
– “Software RAID” WAL writer for redundancy

• Writes WAL into two files for durability (it might be a
paranoia…)

– Filter to make a bitmap for partial backup
• Writes changed pages into on-disk bitmaps

– …

Copyright © 2008 NTT, Inc. All Rights Reserved. 54

For 8.4 : WAL-reading Hook

• Purpose

– Make WAL-Receiver to be one of general extensions

• WAL-Receiver redo in each record, not in each segment

• Proposal

– “WAL-reading Hook” enables to filter WAL records

during they are read in recovery.

• Other extensions using this hook

– Read-ahead WAL reader

• Read a segment at once and pre-fetch required pages that are

not a full-page-writes and not in shared buffers

– …

Copyright © 2008 NTT, Inc. All Rights Reserved. 55

Future work : Multiple Configurations

• Supports several synchronization modes

– One configuration is not fit all,

but one framework could fit many uses!

6

5

4

3

2

1

No.

AfterBeforeBeforeBeforeHA + More durability

Before/After Commit in ACT

AfterAfterBeforeBeforeHA + Durability

BeforeBeforeBeforeBeforeSynchronous Reads in SBY

AfterAfterAfterAfterSpeed

After

After

Flush

in SBY

AfterAfterBeforeHA + Speed

Before

Flush

in ACT

Redo

in SBY

Send

to SBY

Configuration

AfterAfterSpeed + Durability

Now

Copyright © 2008 NTT, Inc. All Rights Reserved. 56

Future work : Horizontal scalability

• Horizontal scalability is not our primary goal, but

for potential users.

• Postgres TODO: “Allow a warm standby system to

also allow read-only statements” helps us.

• NOTE: We need to support 3 or more servers

if we need both scalability and availability.

2 servers

3 servers

2 * 50% 1 * 100%

2 * 100%3 * 66%

Copyright © 2008 NTT, Inc. All Rights Reserved. 57

Conclusion

• Synchronous log-shipping is the best for HA.

– A direction of future warm-standby

– Less downtime, No data loss, and Automatic failover.

• There remains rooms for improvements.

– Minimize downtime and performance scalability.

– Improvements for recovery also helps Log-shipping.

• We’ve shown requirements, advantages, and

remaining tasks.

– It has potential to improvements, but requires some

works to be more useful solution

– We’ll make it open source! Collaborators welcome!

Fin.

Contact

itagaki.takahiro@oss.ntt.co.jp

fujii.masao@oss.ntt.co.jp

