
Satellite Science Data Processing with
PostgreSQL

Curt Tilmes

Curt.Tilmes@nasa.gov

PGCon 2008
May 22, 2008

2008-05-22
2 of 40

Outline

 Background – MODIS and Ozone Processing
 Science Data Processing
 Architecture Evolution
 Metadata and Archiving
 Spatial Searching
 Reprocessing
 Algorithms and Production Rules
 Provenance Tracking
 Process on Demand

2008-05-22
3 of 40

MODIS

 MODIS
• Moderate Resolution Imaging Spectroradiometer

• On Terra (1999) and Aqua (2002) spacecraft
• Views (most of) the earth at 250m, 500m and 1km resolution every day in 36

spectral bands

• MODAPS Processing System

Typhoon Rammasun
20080511

Burma (Myanmar)
20080415

Burma (Myanmar)
20080505
after Cyclone Nargis

*Images courtesy Jeff Schmaltz, MODIS Land Rapid Response Team

2008-05-22
4 of 40

MODIS Data Flow – Level 2

2008-05-22
5 of 40

 7 Level 2 Algorithms
 Input 5 minute granules, output 5 minute granules
 288 x 5 minute granules per day
 144 day-mode, 144 night-mode executions
 Input ~730MB per 5 minutes
 Output ~580MB day-mode and 175MB night mode
 Very suited to distributed processing

MODIS Data Flow – Level 2

2008-05-22
6 of 40

MODIS Data Flow – Level 3, Gridding

2008-05-22
7 of 40

MODIS Data Flow

2008-05-22
8 of 40

Ozone Processing

 OMIDAPS Processing System adapted from MODAPS
 TOMS

• Total Ozone Mapping Spectrometer
• On Nimbus-7 (1978), Meteor-3 (1991) and Earth Probe (1996)

 OMI
• Ozone Monitoring Instrument
• On Aura (2004) spacecraft
• Netherlands Agency for Aerospace Programs (NIVR) in

collaboration with the Finnish Meteorological Institute
(FMI) and the Royal Netherlands Meteorological Institute
(KNMI) sponsored OMI construction.

2008-05-22
9 of 40

Science Data Processing System

• System Context (simplified)

2008-05-22
10 of 40

System Context (actual)

2008-05-22
11 of 40

System Functions

2008-05-22
12 of 40

MODAPS at-launch (circa 1999)

2008-05-22
13 of 40

MODAPS Physical Architecture

 At Terra launch (circa 1998-9)
• 80p SGI Origin 2000, 40 GB RAM

• 1TB disk -> 3TB disk
• Nearline storage on tape
• Sybase Database on the SGI

 Changes for Aqua launch (circa 2001-2)
• Moved Sybase to dedicated Linux server
• Added 2p Linux hosts, offloaded level 2 and level 3 processing

• Added 35TB disk forward processing, 28TB reprocessing

 Later added multiple SGI O2000, O3000 and hundreds of 2p Linux
hosts for Aqua processing, testing, reprocessing

 Eventually hundreds of processors, > 1PB of disk, no tape at all

2008-05-22
14 of 40

MODAPS (circa 2001)

2008-05-22
15 of 40

OMIDAPS Physical Architecture

2008-05-22
16 of 40

New Architecture

2008-05-22
17 of 40

Modular Archive Server

2008-05-22
18 of 40

Use Case Example : Finding a file

 Initial Monolithic architecture
• Every process has direct access to the database

• Every file is local

• DB Query (“select <file location> where <metadata>=<file I want>”)

• open(filename)

 Intermediate Hybrid architecture
• Every process has direct access to the database

• Files are now on a remote host

• DB Query (“select <file location> where ...”)

• rcp archivehost:/path/filename .

• open(filename)

 New architecture
• Files distributed across many remote hosts

• SOAP request to Metadata Server: Find file with <metadata>
 Metadata Server does DB Query to Metadata database

• HTTP GET http://anyarchhost/filename
 archhost does DB Query to Archive database
 if filename is local, return it, else redirect to the host that has it

• open(filename)

2008-05-22
19 of 40

Archiving Files

 Archive two parts of each data file:
• Data – The actual data itself.

 The files get copied onto big disks.
 Data files are always retrieved explicitly by unique name(*).
 We refer to the smallest chunk of individual data as a “granule” of data. It

could be a month of data, a day of data, an orbit of data, 5 minutes, or
even 30 seconds of data.

• Metadata – Information that describes or relates to the data.
 Stored in a relational database (PostgreSQL)
 Used for search and browse to find the data itself.
 Determining metadata can be complex

 Different for every type of data.
 Use “Plugins” that know how to determine metadata for various types of files.

 Give each part its own permanent distinct URL

2008-05-22
20 of 40

Metadata

 “Collection level Metadata”
• The same for every granule within a collection.

 Spacecraft, Instrument, Contact Info, etc.

 “Granule level Metadata”
• Different for each granule.

 Orbit Number, Data capture time, etc.

2008-05-22
21 of 40

Metadata Types: Primary

 Primary
• The set of metadata that uniquely identifies the data of interest.

• Comprises a set of metadata sufficient to distinguish a file:
 Orbital { OrbitNumber }
 TimeRange { StartTime, EndTime }
 DailyGridded { Date, GridCoordinates }

• Construct a unique “Key” from the primary metadata
• A common DB table stores the FileType + Key for every type of file

• Separate tables for each category of data, index key fields
• Examples:

 OMTO3_18418
 MODL1B_20081331405 (2008, julian day 133, 14:05)
 MODVI_2008133_10,10 (2008, julian day 133, grid (10,10))

2008-05-22
22 of 40

Metadata Types: Secondary

 Secondary
• Other interesting information about the file.

• Some useful for searching by criteria or refining search from primary
metadata.
 Geographic information – spatial data searching
 Quality information – cloud obscured, spacecraft maneuver flag, etc.

• Some fields are just extra information the user wants to know about
the file.
 File Size, Checksum, List of input products

• Hundreds of parameters – some very specific for certain types of files.
 %Cloud Covered, Instrument Mode

• Annotations can be added after production

• Stored in very general “Parameter=Value” tables

2008-05-22
23 of 40

Spatial Search

 MODIS geolocation calculates {latitude,longitude,altitude} of every
ground observation, summarized in granule level metadata

 Level 2 (5 minute granules) granule level metadata include
• G-Ring: List of 4 corners (Lat,Long)

• Bounding Box: Highest and Lowest Lat and Long

 Looking into PostGIS Generalized Search Trees (GiST), but not
really using it yet...

2008-05-22
24 of 40

Nominal Orbital Spatial Extent

 Aura uses active station keeping to maintain a standard orbital
repeat cycle of 233 defined paths, ~2 minute blocks

 Path #156:

* Image courtesy KNMI

2008-05-22
25 of 40

Reprocessing

 Forward processing is easy.
• Have a whole day to process each data day (1X)

 Science keeps marching forward
• MODIS had an average of one new science algorithm version

update delivered per day for its first year!
 Do you start processing with the new software immediately each

time you find a bug?
• Sometimes it is better to keep a dataset consistent with known

problems than inconsistent.
 Periodically need to correct old data to make a new “baseline”
 At 1X reprocessing, 7 years of MODIS data would take 7 years –

way too long. Even at 10X, it takes over 8 months..
 Must keep track of multiple versions of the “same” file (and

process)

2008-05-22
26 of 40

Archive Sets

 Only one “instance” of a file can be in an ArchiveSet, with a unique set
of metadata
• i. e. for orbital files, only one file for each set of

 { FileType, OrbitNumber }

 Files can be in more than one ArchiveSet.
 When a new file with the same metadata is ingested for a given

ArchiveSet, it will replace the old file in that ArchiveSet, but both files
are still in the Archive. (The old file could be in another ArchiveSet.)

 DB table holds mapping of files to archivesets.
• Maintained with PostgreSQL trigger function:

 If file with same metadata exists in ArchiveSet, delete it from the ArchiveSet

 Each ArchiveSet acts like a “logical” processing system, providing the
illusion of multiple “physical” processing systems.

2008-05-22
27 of 40

Archive Sets

2008-05-22
28 of 40

 A well defined interface for inserting science algorithms into the
processing framework.

 Allows scientists and developers to concentrate on science and
getting algorithm working.

 APPs can be unit tested outside of the framework.
 Each APP encapsulates an algorithm:

• Executable program(s)

• Wrapper scripts that interface with the framework
• Scheduling Rules – How often should the APP be run?
• Production Rules – What input files and parameters should be used

for a given run?

APP – Algorithm Plugin Package

2008-05-22
29 of 40

APP Overview

2008-05-22
30 of 40

 Scheduling Rules – Divide the work into manageable chunks
• Temporal (5 minutes, 1 orbit, 1 day, 8 days, 16 days, 1 month, etc.)

• Geographic (tile schemes)
• Profiles (different ways of running)

• Etc. (Plugins allow extending to new methods)
• Iterators (and nested iterators) can schedule many instances of

processes at once

 Input Files and Parameters
• What inputs do I need?
• Optional inputs?

• Alternate inputs?
• Timer delays

• Etc. (Plugins allow extending to new queries)

Production Rules

2008-05-22
31 of 40

Production Rules

 Production Rules are defined for each APP

 Production Rules can “succeed” or “fail”
• APP won’t run until all its rules succeed

 Production Rules can search the metadata database for needed dynamic
input files

• Mostly primary metadata tables, sometimes qualified by secondary metadata

 Production Rules search a specific ArchiveSet
• join to archiveset table

 Since the rules search the current database they change with time.

 Production Rules can set dynamic runtime parameters

• Runtime parameters can also be set by operations staff

 Static Input Files and Runtime Parameters are part of the APP

• e. g. a lookup table or elevation map that is the same for every run

2008-05-22
32 of 40

APP Example

Runtime Parameters:
 ECSCollection: '3'
 EndTime: '2008-01-01T02:06:53.000000Z'
 HDFCompress: '0'
 InstrumentConfigAS: '10003'
 OrbitNumber: '18418'
 APP: 'OMTO3'
 APPVersion: '1.1.0'
 ProcessingCenter: 'OMI SIPS'
 ReprocessingActual: 'processed 1 time'
 SMFVerbosityThreshold: '2'
 Source: 'OMI'
 StartTime: '2008-01-01T00:28:00.000000Z'
 TDOPFIntendedPurpose: 'Forward Processing'
 TDOPFVersion: '1301'
 ProcessingHost: 'Linux ominion607 2.6.22.6 i686'

2008-05-22
33 of 40

APP Example

Input Files:
 OML1BIRR:
 - OMI-Aura_L1-OML1BIRR_2004m1231t1248-o99002_v003-2007m0511t172858.he4
 OMCLDRR:
 - OMI-Aura_L2-OMCLDRR_2008m0101t0028-o18418_v003-2008m0108t202125.he5
 NVALC_TO3:
 - OMI-Aura_L2-NVALC_TO3_v00050.he4
 OML1BRUG:
 - OMI-Aura_L1-OML1BRUG_2008m0101t0028-o18418_v003-2008m0108t195451.he4
 LEAPSECT:
 - leapsec.dat.2008010432503

2008-05-22
34 of 40

Data Provenance

 Science is based on a principal of repeatability.

 Provenance: “The origin or source from which something comes”.

 Just as a laboratory experimenter must control and capture everything about the
experiment environment, so should a science data processing system…

• Algorithm Theoretical Basis Documents (ATBD)

• Software Source Code, version

• Software Build Environment, version
 Static libraries, versions

 Compiler versions

• APP version

• Execution Environment
 Specific hardware
 OS version
 Dynamic libraries versions

• Execution Instance

 Runtime parameters

 Input files and versions

2008-05-22
35 of 40

Example Provenance (1)

2008-05-22
36 of 40

Example Provenance (2)

2008-05-22
37 of 40

Example Provenance (3)

2008-05-22
38 of 40

Provenance Objectives

 Capturing complete and accurate provenance during data ingest
and primary data processing

 Archiving provenance such that it can be easily retrieved and
searched, even if the data are deleted

 Representing provenance to human users and providing tools for
navigating graph to search and explore data provenance

 Representing provenance semantically to other systems at
cooperating institutions with standard ontologies

 Allow agents to traverse inter-system provenance graphs and
answer provenance questions

 Allow independent systems to mechanically reproduce data
processing using the provenance information

2008-05-22
39 of 40

Process On Demand

 For valid science and complete “scientific reproducibility”, you must
capture sufficient information to trace back the provenance of each
product.

 Given such provenance and the ability to use it, do you still need the files
in the archive at all?

• There is a tradeoff between disk costs and processing costs
 “Extreme Compression”

• Instead of storing the data product, just store the provenance.
• When someone needs the file, just re-create it.
• Given periodic reprocessing, many files are never needed again

anyway..

 Allows much larger “virtual archives”

• We make choices about which products to create, archive and
distribute – intermediate products not always kept anyway

2008-05-22
40 of 40

Conclusion

•Questions/Comments?

2008-05-22
41 of 40

OMIDAPS Schema

