
Satellite Science Data Processing with
PostgreSQL

Curt Tilmes

Curt.Tilmes@nasa.gov

PGCon 2008
May 22, 2008

2008-05-22
2 of 40

Outline

 Background – MODIS and Ozone Processing
 Science Data Processing
 Architecture Evolution
 Metadata and Archiving
 Spatial Searching
 Reprocessing
 Algorithms and Production Rules
 Provenance Tracking
 Process on Demand

2008-05-22
3 of 40

MODIS

 MODIS
• Moderate Resolution Imaging Spectroradiometer

• On Terra (1999) and Aqua (2002) spacecraft
• Views (most of) the earth at 250m, 500m and 1km resolution every day in 36

spectral bands

• MODAPS Processing System

Typhoon Rammasun
2008­05­11

Burma (Myanmar)
2008­04­15

Burma (Myanmar)
2008­05­05
after Cyclone Nargis

*Images courtesy Jeff Schmaltz, MODIS Land Rapid Response Team

2008-05-22
4 of 40

MODIS Data Flow – Level 2

2008-05-22
5 of 40

 7 Level 2 Algorithms
 Input 5 minute granules, output 5 minute granules
 288 x 5 minute granules per day
 144 day-mode, 144 night-mode executions
 Input ~730MB per 5 minutes
 Output ~580MB day-mode and 175MB night mode
 Very suited to distributed processing

MODIS Data Flow – Level 2

2008-05-22
6 of 40

MODIS Data Flow – Level 3, Gridding

2008-05-22
7 of 40

MODIS Data Flow

2008-05-22
8 of 40

Ozone Processing

 OMIDAPS Processing System adapted from MODAPS
 TOMS

• Total Ozone Mapping Spectrometer
• On Nimbus-7 (1978), Meteor-3 (1991) and Earth Probe (1996)

 OMI
• Ozone Monitoring Instrument
• On Aura (2004) spacecraft
• Netherlands Agency for Aerospace Programs (NIVR) in

collaboration with the Finnish Meteorological Institute
(FMI) and the Royal Netherlands Meteorological Institute
(KNMI) sponsored OMI construction.

2008-05-22
9 of 40

Science Data Processing System

• System Context (simplified)

2008-05-22
10 of 40

System Context (actual)

2008-05-22
11 of 40

System Functions

2008-05-22
12 of 40

MODAPS at-launch (circa 1999)

2008-05-22
13 of 40

MODAPS Physical Architecture

 At Terra launch (circa 1998-9)
• 80p SGI Origin 2000, 40 GB RAM

• 1TB disk -> 3TB disk
• Nearline storage on tape
• Sybase Database on the SGI

 Changes for Aqua launch (circa 2001-2)
• Moved Sybase to dedicated Linux server
• Added 2p Linux hosts, offloaded level 2 and level 3 processing

• Added 35TB disk forward processing, 28TB reprocessing

 Later added multiple SGI O2000, O3000 and hundreds of 2p Linux
hosts for Aqua processing, testing, reprocessing

 Eventually hundreds of processors, > 1PB of disk, no tape at all

2008-05-22
14 of 40

MODAPS (circa 2001)

2008-05-22
15 of 40

OMIDAPS Physical Architecture

2008-05-22
16 of 40

New Architecture

2008-05-22
17 of 40

Modular Archive Server

2008-05-22
18 of 40

Use Case Example : Finding a file

 Initial Monolithic architecture
• Every process has direct access to the database

• Every file is local

• DB Query (“select <file location> where <metadata>=<file I want>”)

• open(filename)

 Intermediate Hybrid architecture
• Every process has direct access to the database

• Files are now on a remote host

• DB Query (“select <file location> where ...”)

• rcp archivehost:/path/filename .

• open(filename)

 New architecture
• Files distributed across many remote hosts

• SOAP request to Metadata Server: Find file with <metadata>
 Metadata Server does DB Query to Metadata database

• HTTP GET http://anyarchhost/filename
 archhost does DB Query to Archive database
 if filename is local, return it, else redirect to the host that has it

• open(filename)

2008-05-22
19 of 40

Archiving Files

 Archive two parts of each data file:
• Data – The actual data itself.

 The files get copied onto big disks.
 Data files are always retrieved explicitly by unique name(*).
 We refer to the smallest chunk of individual data as a “granule” of data. It

could be a month of data, a day of data, an orbit of data, 5 minutes, or
even 30 seconds of data.

• Metadata – Information that describes or relates to the data.
 Stored in a relational database (PostgreSQL)
 Used for search and browse to find the data itself.
 Determining metadata can be complex

 Different for every type of data.
 Use “Plugins” that know how to determine metadata for various types of files.

 Give each part its own permanent distinct URL

2008-05-22
20 of 40

Metadata

 “Collection level Metadata”
• The same for every granule within a collection.

 Spacecraft, Instrument, Contact Info, etc.

 “Granule level Metadata”
• Different for each granule.

 Orbit Number, Data capture time, etc.

2008-05-22
21 of 40

Metadata Types: Primary

 Primary
• The set of metadata that uniquely identifies the data of interest.

• Comprises a set of metadata sufficient to distinguish a file:
 Orbital { OrbitNumber }
 TimeRange { StartTime, EndTime }
 DailyGridded { Date, GridCoordinates }

• Construct a unique “Key” from the primary metadata
• A common DB table stores the FileType + Key for every type of file

• Separate tables for each category of data, index key fields
• Examples:

 OMTO3_18418
 MODL1B_20081331405 (2008, julian day 133, 14:05)
 MODVI_2008133_10,10 (2008, julian day 133, grid (10,10))

2008-05-22
22 of 40

Metadata Types: Secondary

 Secondary
• Other interesting information about the file.

• Some useful for searching by criteria or refining search from primary
metadata.
 Geographic information – spatial data searching
 Quality information – cloud obscured, spacecraft maneuver flag, etc.

• Some fields are just extra information the user wants to know about
the file.
 File Size, Checksum, List of input products

• Hundreds of parameters – some very specific for certain types of files.
 %Cloud Covered, Instrument Mode

• Annotations can be added after production

• Stored in very general “Parameter=Value” tables

2008-05-22
23 of 40

Spatial Search

 MODIS geolocation calculates {latitude,longitude,altitude} of every
ground observation, summarized in granule level metadata

 Level 2 (5 minute granules) granule level metadata include
• G-Ring: List of 4 corners (Lat,Long)

• Bounding Box: Highest and Lowest Lat and Long

 Looking into PostGIS Generalized Search Trees (GiST), but not
really using it yet...

2008-05-22
24 of 40

Nominal Orbital Spatial Extent

 Aura uses active station keeping to maintain a standard orbital
repeat cycle of 233 defined paths, ~2 minute blocks

 Path #156:

* Image courtesy KNMI

2008-05-22
25 of 40

Reprocessing

 Forward processing is easy.
• Have a whole day to process each data day (1X)

 Science keeps marching forward
• MODIS had an average of one new science algorithm version

update delivered per day for its first year!
 Do you start processing with the new software immediately each

time you find a bug?
• Sometimes it is better to keep a dataset consistent with known

problems than inconsistent.
 Periodically need to correct old data to make a new “baseline”
 At 1X reprocessing, 7 years of MODIS data would take 7 years –

way too long. Even at 10X, it takes over 8 months..
 Must keep track of multiple versions of the “same” file (and

process)

2008-05-22
26 of 40

Archive Sets

 Only one “instance” of a file can be in an ArchiveSet, with a unique set
of metadata
• i. e. for orbital files, only one file for each set of

 { FileType, OrbitNumber }

 Files can be in more than one ArchiveSet.
 When a new file with the same metadata is ingested for a given

ArchiveSet, it will replace the old file in that ArchiveSet, but both files
are still in the Archive. (The old file could be in another ArchiveSet.)

 DB table holds mapping of files to archivesets.
• Maintained with PostgreSQL trigger function:

 If file with same metadata exists in ArchiveSet, delete it from the ArchiveSet

 Each ArchiveSet acts like a “logical” processing system, providing the
illusion of multiple “physical” processing systems.

2008-05-22
27 of 40

Archive Sets

2008-05-22
28 of 40

 A well defined interface for inserting science algorithms into the
processing framework.

 Allows scientists and developers to concentrate on science and
getting algorithm working.

 APPs can be unit tested outside of the framework.
 Each APP encapsulates an algorithm:

• Executable program(s)

• Wrapper scripts that interface with the framework
• Scheduling Rules – How often should the APP be run?
• Production Rules – What input files and parameters should be used

for a given run?

APP – Algorithm Plugin Package

2008-05-22
29 of 40

APP Overview

2008-05-22
30 of 40

 Scheduling Rules – Divide the work into manageable chunks
• Temporal (5 minutes, 1 orbit, 1 day, 8 days, 16 days, 1 month, etc.)

• Geographic (tile schemes)
• Profiles (different ways of running)

• Etc. (Plugins allow extending to new methods)
• Iterators (and nested iterators) can schedule many instances of

processes at once

 Input Files and Parameters
• What inputs do I need?
• Optional inputs?

• Alternate inputs?
• Timer delays

• Etc. (Plugins allow extending to new queries)

Production Rules

2008-05-22
31 of 40

Production Rules

 Production Rules are defined for each APP

 Production Rules can “succeed” or “fail”
• APP won’t run until all its rules succeed

 Production Rules can search the metadata database for needed dynamic
input files

• Mostly primary metadata tables, sometimes qualified by secondary metadata

 Production Rules search a specific ArchiveSet
• join to archiveset table

 Since the rules search the current database they change with time.

 Production Rules can set dynamic runtime parameters

• Runtime parameters can also be set by operations staff

 Static Input Files and Runtime Parameters are part of the APP

• e. g. a lookup table or elevation map that is the same for every run

2008-05-22
32 of 40

APP Example

Runtime Parameters:
 ECSCollection: '3'
 EndTime: '2008-01-01T02:06:53.000000Z'
 HDFCompress: '0'
 InstrumentConfigAS: '10003'
 OrbitNumber: '18418'
 APP: 'OMTO3'
 APPVersion: '1.1.0'
 ProcessingCenter: 'OMI SIPS'
 ReprocessingActual: 'processed 1 time'
 SMFVerbosityThreshold: '2'
 Source: 'OMI'
 StartTime: '2008-01-01T00:28:00.000000Z'
 TDOPFIntendedPurpose: 'Forward Processing'
 TDOPFVersion: '1301'
 ProcessingHost: 'Linux ominion607 2.6.22.6 i686'

2008-05-22
33 of 40

APP Example

Input Files:
 OML1BIRR:
 - OMI-Aura_L1-OML1BIRR_2004m1231t1248-o99002_v003-2007m0511t172858.he4
 OMCLDRR:
 - OMI-Aura_L2-OMCLDRR_2008m0101t0028-o18418_v003-2008m0108t202125.he5
 NVALC_TO3:
 - OMI-Aura_L2-NVALC_TO3_v00050.he4
 OML1BRUG:
 - OMI-Aura_L1-OML1BRUG_2008m0101t0028-o18418_v003-2008m0108t195451.he4
 LEAPSECT:
 - leapsec.dat.2008010432503

2008-05-22
34 of 40

Data Provenance

 Science is based on a principal of repeatability.

 Provenance: “The origin or source from which something comes”.

 Just as a laboratory experimenter must control and capture everything about the
experiment environment, so should a science data processing system…

• Algorithm Theoretical Basis Documents (ATBD)

• Software Source Code, version

• Software Build Environment, version
 Static libraries, versions

 Compiler versions

• APP version

• Execution Environment
 Specific hardware
 OS version
 Dynamic libraries versions

• Execution Instance

 Runtime parameters

 Input files and versions

2008-05-22
35 of 40

Example Provenance (1)

2008-05-22
36 of 40

Example Provenance (2)

2008-05-22
37 of 40

Example Provenance (3)

2008-05-22
38 of 40

Provenance Objectives

 Capturing complete and accurate provenance during data ingest
and primary data processing

 Archiving provenance such that it can be easily retrieved and
searched, even if the data are deleted

 Representing provenance to human users and providing tools for
navigating graph to search and explore data provenance

 Representing provenance semantically to other systems at
cooperating institutions with standard ontologies

 Allow agents to traverse inter-system provenance graphs and
answer provenance questions

 Allow independent systems to mechanically reproduce data
processing using the provenance information

2008-05-22
39 of 40

Process On Demand

 For valid science and complete “scientific reproducibility”, you must
capture sufficient information to trace back the provenance of each
product.

 Given such provenance and the ability to use it, do you still need the files
in the archive at all?

• There is a tradeoff between disk costs and processing costs
 “Extreme Compression”

• Instead of storing the data product, just store the provenance.
• When someone needs the file, just re-create it.
• Given periodic reprocessing, many files are never needed again

anyway..

 Allows much larger “virtual archives”

• We make choices about which products to create, archive and
distribute – intermediate products not always kept anyway

2008-05-22
40 of 40

Conclusion

•Questions/Comments?

2008-05-22
41 of 40

OMIDAPS Schema

