
11

EXECUTION PLAN
OPTIMIZATION
TECHNIQUES
Július Štroffek
Database Sustaining Engineer
Sun Microsystems, Inc.

Tomáš Kovařı́k
Faculty of Mathematics and Physics,
Charles University, Prague

PostgreSQL Conference, 2007



Outline
Motivation

Definition of The Problem

Deterministic Algorithms for Searching the Space

Non-Deterministic Algorithms for Searching the Space

Demo

Algorithms Already Implemented for Query Optimization

Experimental Performance Comparison

Demo

Conclusions



Motivation



Motivation

Questions which come to mind looking at PostgreSQL
optimizer implementation:

I Why to use genetic algorithm?
I Does this implementation behave well?
I What about other ”Soft Computing” methods?
I Are they worse, the same or better?
I What is the optimizer’s bottle-neck?



Goals

I Focus on algorithms for searching the space
I Present ideas how PostgreSQL optimizer might be

improved
I Receive feedback
I Discuss the ideas within the community
I Implement some of those ideas



Definition of The Problem



Join Graph

Definition
I A node represents a

relation
I An edge indicates that a

condition was used to
restrict records of the
connected relations

I Arrows might be used to
reflect outer joins



Example
We have the following tables

Question/Query?
What is the salary and cell phone number of my boss’es
boss?



Optimizer and Execution Plan

Lets have a query like this
select
bboss.EmpId, sal.Salary,
sal.Currency, con.Value

from
Employees as emp,
Employees as boss,
Employees as bboss,
Salaries as sal,
Contacts as con

where
emp.LastName=’MyName’
and emp.ReportsTo = boss.EmpId
and boss.ReportsTo = bboss.EmpId
and bboss.EmpId = sal.EmpId
and con.EmpId = bboss.EmpId
and con.Type = ’CELL’

How to process the query?

I There are 5 relations to
be joined

I If we do not allow product
joins we have 10 options

I With product joins
allowed we have 60
options



Join Graph for the Example Query



Execution Plan
Left-Deep Tree Example

Hash Join (cost=13.84..17.81 rows=1 width=151)
Hash Cond: (”outer”.empid = ”inner”.reportsto)
→ Seq Scan on employees bboss (cost=0.00..3.64 rows=64 width=4)
→ Hash (cost=13.84..13.84 rows=1 width=159)
→ Hash Join (cost=10.71..13.84 rows=1 width=159)

Hash Cond: (”outer”.empid = ”inner”.reportsto)
→ Seq Scan on contacts con (cost=0.00..2.80 rows=64 width=136)

Filter: (”type” = ’CELL’::bpchar)
→ Hash (cost=10.71..10.71 rows=1 width=23)
→ Hash Join (cost=7.78..10.71 rows=1 width=23)

Hash Cond: (”outer”.empid = ”inner”.reportsto)
→ Seq Scan on sallaries sal (cost=0.00..2.28 rows=128 width=19)
→ Hash (cost=7.77..7.77 rows=1 width=4)
→ Hash Join (cost=3.80..7.77 rows=1 width=4)

Hash Cond: (”outer”.empid = ”inner”.reportsto)
→ Seq Scan on employees boss (cost=0.00..3.64 rows=64 width=8)
→ Hash (cost=3.80..3.80 rows=1 width=4)
→ Seq Scan on employees emp (cost=0.00..3.80 rows=1 width=4)

Filter: (lastname = ’MyName’::bpchar)



Execution Plan
Left-Deep Tree Example - pgAdmin



Execution Plan
Bushy Tree Example

Nested Loop (cost=1.00..13.17 rows=1 width=151)
Join Filter: (”inner”.empid = ”outer”.empid)
→ Hash Join (cost=1.00..4.13 rows=1 width=155)

Hash Cond: (”outer”.empid = ”inner”.empid)
→ Seq Scan on contacts con (cost=0.00..2.80 rows=64 width=136)

Filter: (”type” = ’CELL’::bpchar)
→ Hash (cost=1.00..1.00 rows=1 width=19)
→ Seq Scan on sallaries sal (cost=0.00..1.00 rows=1 width=19)

→ Nested Loop (cost=0.00..9.02 rows=1 width=8)
Join Filter: (”outer”.reportsto = ”inner”.empid)
→ Nested Loop (cost=0.00..6.01 rows=1 width=4)

Join Filter: (”outer”.reportsto = ”inner”.empid)
→ Seq Scan on employees emp (cost=0.00..3.00 rows=1 width=4)

Filter: (lastname = ’MyName’::bpchar)
→ Seq Scan on employees boss (cost=0.00..3.00 rows=1 width=8)

→ Seq Scan on employees bboss (cost=0.00..3.00 rows=1 width=4)



Execution Plan
Bushy Tree Example - pgAdmin



Rule Based Optimization

I Deterministic - produce the same result at every call
for the same query

I Mostly produces a plan based on a join graph
I Does not search through the large space
I Thus it is relatively ”fast”
I Does not find the best plan in most cases
I Many approaches how to find the plan based on a

use case and database schema
I Deprecated Approach



Cost Based Optimization

I Evaluate every execution plan by it’s cost
I Using relation statistics to calculate estimates and

cost
I Exponential search space size
I Have to use a proper method for searching the space
I Finds the best plan for a small number of relations
I Not possible to find the best plan for too many

relations



Deterministic Algorithms



Dynamic Programming

I Checks all possible orders of relations
I Applicable only for small number of relations
I Pioneered by IBM’s System R database project
I Iteratively creates and computes costs for every

combination of relations. Start with an access to an
every single relation. Later, compute the cost of joins
of every two relations, afterwards do the same for
more relations.



Dynamic Programming
Example

Four relations to be joined – A, B, C and D.



Dijkstra’s algorithm
Description

A graph algorithm which finds the shortest path from a
source node to any destination node in a weighted
oriented graph

I A graph has to have a non-negative weight function
on edges

I The weight of the path is the sum of weights on edges
on the path

Question
How can we manage that the path will go through all the
nodes/relations in a join graph?



Dijkstra’s algorithm
Description II

We will search for the path in a join graph directly but we
will search for a shortest path in a different graph.

I Nodes – all possible subsets of relations to be joined
I Edges – directed; connect every node to all other

nodes where it is possible to “go” by performing
exactly one join

I Being in a node on the path means that the
corresponding relations are joined

I Going through the edge means that we are
performing a join



Dijkstra’s algorithm
Graph Example

We are joining four relations - A, B, C and D.



Dijkstra’s algorithm
Description III

For each node V we will maintain
I The lowest cost c(V ) of already found path to achieve

the node
I The state of the node – open/closed

We will also maintain a set of nodesM which will hold
open nodes



A* Search Algorithm

I Modification of Dijkstra’s algorithm
I Introduces a heuristic function h(V ) which calculates

the lower bound of the path cost from the node V to
the destination node

I We will choose the node to be processed with
minimal c(V ) + h(V ) and mark it as closed

I If we have “better” heuristic function we do not have
to go through the whole space



A* Search Algorithm
Possible Heuristic Functions

I The number of tuples in the current node
I Reduces paths where too many tuples are prodced
I Applicable only in materialization nodes

I The number of tuples that need to be fetched from the
remaining relations

I A “realistic” lower bound
I Might be extended to get a lower bound of the cost of

remaining joins

I Any other approximation?



Nearest Neighbor
1. Lets start in the first node
2. Chose an edge with the lowest cost going to an

unreached node
3. Repeat the previous step until there is any unvisited

node
4. If the path found has lower cost than the best path

already known remember the path
5. Choose the next node as a starting one and continue

with 2nd step

It is possible to check all the paths of the constant length
instead of only edges.



Nearest Neighbor for Bushy Trees

1. Build a set of nodes with an access to every relation
2. Choose the cheapest join from all the combinations of

possible joins of any two relations from the set
3. Add the result node to the set of relations to be joined
4. Remove the originating relations from the set
5. Go back to 2nd step if we still have more than one

relation

It is also possible to look forward for more joins at once.



Non-Deterministic Algorithms



Random Walk

Randomly goes through the search space

1. Set the MAX VALUE as a cost for the best known
path

2. Choose a random path
3. If the cost of the chosen path is better than the

currently best known remember the path as the best
4. Go back to step 2

Very naive, not very usable in practise but can be used for
comparison with other algorithms



Simulated Annealing
It is an analogy with physics – a cooling process of
a crystal.

A crystal has lots of energy and small random changes
are happening in its structure. These small changes are
more stable if the crystal emits the energy afterwards.

An execution plan has a high cost at the begining. A small
random change is generated in every iteration of the
process. Depending upon the cost change the probability
whether the change is preserved or discarded is
computed. The change is kept with the computed
probability.



Hill-Climbing

1. Start with a random path
2. Check all the neighbor paths and find the one with the

lowest cost
3. If the cost of the best neighboring path is lower than

the actual one change the actual one to that neighbor
4. Go back to 2nd step if we found a better path in the

previous step



Demo
Travelling Salesman Problem

A travelling salesman has N cities which he needs to visit.
He would like to find the shortest path going through all
the cities.

I Similar to the execution plan optimization problem
I The evaluation function has different properties

I The evaluation of an edge between two cities does not
depend on the cities already visited

I Different behavior of heuristic algorithms



Implemented Algorithms



Implemented Algorithms

I Number of algorithms for optimization of large join
queries was described and studied, e.g. in:

I M. Steinbrunn, G. Moerkotte, A. Kemper. Heuristic and
Randomized Optimization for the Join Ordering Problem. In
VLDB Journal, 6(3), 1997

I Ioannidis, Y. E. and Kang, Y. 1990. Randomized algorithms
for optimizing large join queries. In Proceedings of the 1990
ACM SIGMOD international Conference on Management of
Data

I Performance evaluation and comparison of these
algorithms is available

I Implementation is often experimental and only for
purposes of the given research



Studied algorithms

We will look at the following algorithms in more detail

I Genetic Algorithm
I Simulated Annealing
I Iterative Improvement
I Two Phase Optimization
I Toured Simulated Annealing



Genetic Algorithm

I Well known to the PostgreSQL community - GEQO -
GEnetic Query Optimizer

I Fundamentally different approach designed to
simulate biological evolution

I Works always on a set of solutions called population
I Solutions are represented as character strings by

appropriate encoding.
I In our case query processing trees

I Quality, or “fitness” of the solution is measured by an
objective function

I Evaluation cost of processing tree, has to be minimized



Genetic Algorithm
Steps

I “’Zero” population of random character strings is
generated

I Each next generation is obtained by a combination of
I Selection - Selected fittest members of the population

survive to the next generation
I Crossover - Selected fittest members of the population are

combined producing an offspring
I Mutation - Certain fraction of the population is randomly

altered (mutated)
I This is repeated until

I the population has reached desired quality
I predetermined number of populations has been generated
I no improvement has been detected for several generations



Simulated Annealing

I Doesn’t have to improve on every move
I Doesn’t get “trapped” in local minimum so easily
I Exact behavior determined by parameters:

I starting temperature (e.g. function of node cost)
I temperature reduction (e.g. 90% of the old value)
I stopping condition (e.g. no improvement in certain number

of temperature reductions)

I Performance of the algorithm is dependent on the
values of these parameters



Simulated Annealing
Determining neighbor states

I Join method choice
I Left-deep processing trees solution space

represented by an ordered list of relations to be joined
I Swap – exchange position of two relations in the list
I 3Cycle – Cyclic rotation of three relations in the list

I Complete solution space including bushy trees
I Join commutativity A ./ B→ B ./ A
I Join associativity (A ./ B) ./ C↔ A ./ (B ./ C)
I Left join exchange (A ./ B) ./ C↔ (A ./ C) ./ B
I Right join exchange A ./ (B ./ C)↔ B ./ (A ./ C)



Iterative Improvement

I Strategy similar to Hill climbing algorithm
I Overcomes the problem of reaching local minimum
I Steps of the algorithm

I Select random starting point
I Choose random neighbor, if the cost is lower than the

current node, carry out the move
I Repeat step 2 until local minimum is reached
I Repeat all steps until stopping condition is met
I Return the local minimum with the lowest cost

I Stopping condition can be processing fixed number of
starting points or reaching the time limit



Two Phase Optimization

I Combination of SA and II, uses advantages of both
I Rapid local minimum discovery
I Search of the neighborhood even with uphill moves

I Steps of the algorithm
I Predefined number of starting points selected randomly
I Local minima sought using Iterative improvement
I Lowest of these minima is used as a starting point of

simulated annealing

I Initial temperature of the SA is lower, since only small
proximity of the minimum needs to be covered



Toured Simulated Annealing

I Simulated annealing algorithm is run several times
with different starting points

I Starting points are generated using some
deterministic algorithm with reasonable heuristic

I The initial temperature is much lower than with the
generic simulated annealing algorithm

I Benefits over plain simulated annealing
I Covering different parts of the search space
I Reduced running time



Experimental Performance
Comparision



Experimental Performance Comparison
What to consider

I Evaluation plan quality vs. running time
I Different join graph types

I Chain
I Star
I Cycle
I Grid

I Left-deep tree optimization vs. Bushy tree
optimization

I Algorithms involved
I Genetic algorithm (Bushy genetic algorithm)
I Simulated annealing, Iterative improvement, Two phase

optimization



Experimental Performance Comparison
Results

I Bushy tree optimization yields better results
especially for chain and cycle join graphs.

I If solution quality is preferred, 2PO achieves better
results (although slightly sacrificing the running time).

I Iterative improvement and Genetic algorithm are
suitable in case the running time is more important.

I Pure Simulated annealing requires higher running
time without providing better solutions.



Demo



Conclusions



Conclusions

I We have presented an overview of algorithms usable
for query optimization

I Choosing the best algorithm is difficult
I PostgreSQL has configuration parameters for GEQO

I Threshold
I Population size
I Number of populations
I Effort based approach

I More configurable optimizer with different algorithms
I OLAP - would prefer better plan optimization
I OLTP - would prefer faster plan optimization



11

Július Štroffek
Julius.Stroffek@Sun.COM
julo@stroffek.net

Tomáš Kovařı́k
tkovarik@gmail.com


	Motivation
	Definition of The Problem
	Deterministic Algorithms for Searching the Space
	Non-Deterministic Algorithms for Searching the Space
	Demo
	Algorithms Already Implemented for Query Optimization
	Experimental Performance Comparison
	Conclusions

