

PostgreSQL on Solaris PGCon 2007

Josh Berkus, Jim Gates, Zdenek Kotala, Robert Lor Sun Microsystems

Agenda

- Sun Cluster
- ZFS
- Zones
- Dtrace
- Service Management Facility (SMF)

Hightly Available HA-PostgreSQL on Sun Cluster

1. Sun Cluster

- Loosely coupled heterogeneous nodes
 - Max. 64 nodes
- Provides single client view of network services or applications
 - databases, web services, file services.
- Highly available and scalable applications
- Capacity for modular growth
- Low entry price compared to traditional hardware fault-tolerant systems.

2. Sun Cluster Continued

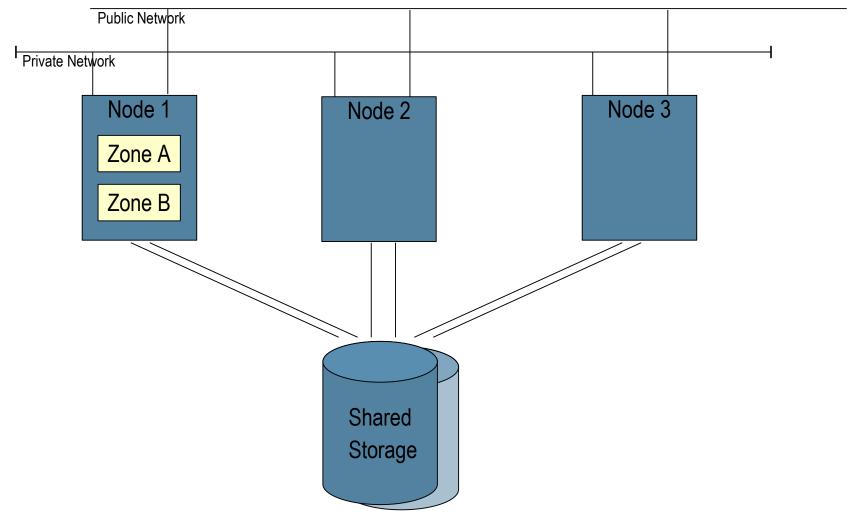
- Continuously monitors health of member nodes, networks and storage
- Monitors applications and their dependent system resources, and fails over or restarts applications in case of failures.
- Fault-tolerant hardware systems come at a higher cost because of specialized hardware.

3. Sun Cluster Goals

- Reduce system downtime due to software or hardware failure
- Ensure availability of data and applications, regardless of the kind of failure that would normally take down a single server system
- Increase application throughput by enabling services to scale to additional processors by adding nodes to the cluster
- Perform maintenance without shutting down the entire cluster

4. Failover and Scalability

- A single cluster can support both failover and scalable applications.
- Failover
 - Cluster automatically relocates an application from a failed primary node or zone to a designated secondary node or zone.
 - Clients might see a brief interruption in service and might need to reconnect after the failover has finished.



5. Failover and Scalability

- Scalability
 - Leverages the multiple nodes in a cluster to concurrently run an application, thus providing increased performance.
 - Each node in the cluster can provide data and process client requests.
- HA-PostgreSQL is a failover application

6. Sun Cluster Topology

7. Typical Applications

- HA-Oracle
- Oracle RAC (scalable)
- App Server (HA or scalable)
- Web Server
- HA-NFS
- HA-DNS
- HA-SAP
- HA-Siebel

8. Terminology

- Logical hostname
 - Paddress, mastered on one node at a time, relocated between nodes
- Resource type
 - Unique name given to a data service object
 - > Either failover types or scalable types
 - > Associated start, stop, monitor, etc. methods
- Resource
 - An instance of a resource type.
 - Many resources of the same type might exist, each having its own name and set of property values

9. Terminology Continued

- Resource group
 - A collection of resources that are managed as a single unit.
 - > All resources must be configured in a resource group.
 - > Related and interdependent resources are grouped.
- Data service
 - An application that has been instrumented to run as a highly available resource under control of the Resource Group Manager

10. HA-PostgreSQL Data Service

Resource Group

Logical Hostname

PostgreSQL Resource

HA-Storage (filesystem)

11. Monitoring

- Starting the resource group
 - > Start (plumb up) logical hostname
 - Start (fsck & mount) filesystem
 - Start PostgreSQL (pg_ctl)
 - > Monitor PostgreSQL
- Stopping is reverse of start steps
- All HA-PostgreSQL methods implemented as Korne shell scripts

12. Monitoring (continued)

- Monitor method uses ps & psql client tool:
 - > Check postmaster running
 - > Select datname from pg_database
 - Truncate test table, insert into test table, select from test table
 - > Bounded response time (timeout)
- Problems that cause errors initiate:
 - > Retry/wait cycle (configurable)
 - > Restart of database cluster instance
 - > Failover of resource group to another zone or node

13. Monitoring (continued)

- Typical problems that HA-PostgreSQL/Cluster will recover from
 - > Public network failure
 - > Node crash
 - Database cluster instance crash
 - > Accidental database shutdown
 - System memory shortage
 - > Backend errors and hangs

14. Monitoring (continued)

- Problems that HA-PostgreSQL can't prevent or recover:
 - > Data corruption
 - Multiple failures e.g. All nodes crash, complete loss of storage
 - Database errors not detected by the monitor

15. Restrictions

- Database cluster (PGDATA) must be placed on shared storage
- Server must perform TCP listen on localhost
- Password policy must be trust or password

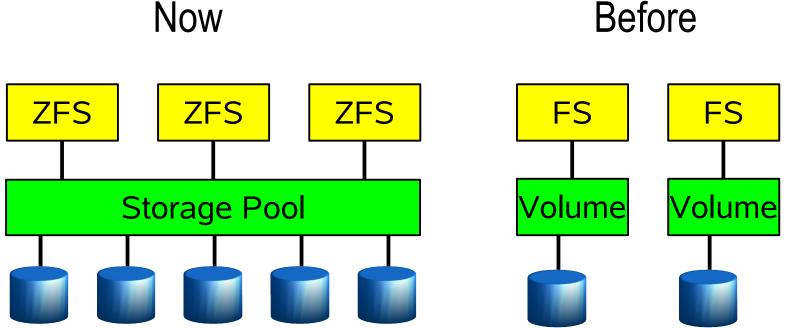
16. Availability

- Sun Cluster version 3.2
 - > Requires license
 - > Not available for earlier versions 3.1 & 3.0
 - > Solaris 9 & 10
 - > SPARC, x86 and AMD64
- Data service package on SC Agents DVD
 - > SUNWscPostgreSQL
- Any PostgreSQL version that includes pg_ctl & psql
- PostgreSQL for Solaris is free
 - > 8.1 bundled with Solaris 10 6/06 (u2) onwards
 - > 8.2 bundled with Solaris 10 6/07 (u4) onwards

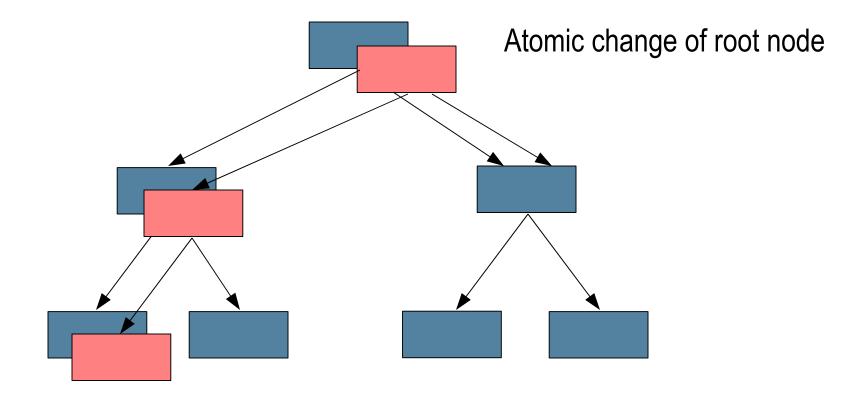
Solaris ZFS – The last word in filesystems

ZFS Features

- Pooled Storage Model
- Always consistent on disk
- Protection from data corruption
- Live data scrubbing
- Instantaneous snapshots and clones
- Fast native backup and restore
- Highly scalable
- Built in compression
- Simplified administration model


Design Principles

- Completely new design
 - > 128-bit
 - Copy on write (COW)
- Pooled storage
 - > ZPOOL/ZFS does for storage what VM does for memory
- End-to-end data integrity
 - Validates the entire I/O path
- Transactional operation
 - > Keep things always consistent on disk
 - > Removes almost all constraints on I/O order


ZFS

- The World's First 128-bit File System
 - Zetabyte = 70 bit (a billion TB)
 - > ZFS capacity = 256 quadrillion ZB
- Pooled Storage

Copy On Write

ZFS basic

- Create pool
 - > # zpool create pgsql c1t2d0
- Create filesystem
 - > # zfs create -b 8192 pgsql/data
 - > # zfs set mountpoint=/var/postgres/data pgsql/data
- And more ...
 - # zfs create pgsql/data/base
 - # zfs create pgsql/data/tablespace_1
 - > # zfs create pgsql/data/tablespace_2

ZFS basic II.

- Compress data
 - > # zfs set compression=on pgsql/data
- Set quota
 - # zfs set quota=10g pgsql/data/tablespace_1
- Reserve space
 - # zfs set reservation=10g pgsql/data/tablespace_1
- No space?
 - # zpool add pgsql c5t1d0 c6t1d0
- NFS-export
 - > # zfs set sharenfs=rw pgsql/data

ZFS Advance

Snapshot

- > Read only point-in-time copy of filesystem
- Access through .zfs/snapshot in root of each filesystem
- # zfs snapshot pgsql/data@tuesday
- # zfs rollback pgsql/data@tuesday

Clone

- > Writable copy of snapshot
- # zfs clone pgsql/data@tuesday pgsql/data_test

PGCon 2007 27

ZFS Advance II.

- Backup/Restore
 - > Based on snapshot
 - Full or incremental
 - #zfs send psql/data@tuesday > /var/postgres/backup/back.full
 - Incremental
 - #zfs send -i psql/data@tuesday psql/data@wednesday> /var/postgres/backup/back.inc
 - > Possible to do remote replication
 - # zfs send -i psql/data@11:31 psql/data@11:32 | ssh host zfs receive -d /var/postgres/data

Solaris Containers

Containers: Zones + Resource Control

- Run multiple applications on one system
 - > Improve utilization
 - > Reduce management overhead
- Isolate applications from:
 - > Faults
 - > Intrusion
- Resource control
 - > CPU
 - > Memory
 - > Processes

Containers Demo

PGCon 2007 31

Solaris Dynamic Tracing

Introducing DTrace

- Allows for dynamic instrumentation of the OS and applications
- Available on stock systems typical system has more than 30,000 probes
- Dynamically interpreted language allows for arbitrary actions and predicates

Introducing Dtrace, cont.

- Designed explicitly for use on production systems
- Zero performance impact when not in use
- Completely safe no way to cause panics, crashes, data corruption
- Powerful data management primitives eliminate need for most postprocessing
- Unwanted data is pruned as close to the source as possible

Dtrace Demo

Solaris Service Management Facility

SMF

- Defines relationships among:
 - > Applications
 - > Solaris components
- Simplifies administration
 - Consolidates "application profile"
 - > Helps manage components
- Increases service reliability
 - Detects service outages quickly
 - > Recovers services accurately

SMF Demo

Further Information

- OpenSolaris Communities
 - http://www.opensolaris.org
- Sun Cluster home page
 - http://www.sun.com/software/solaris/cluster/index.xml
- HA-PostgreSQL page
 - http://www.sun.com/download/products.xml?id=44774401
- PostgreSQL on Solaris
 - http://www.sun.com/software/solaris/postgresql.jsp
- PostgreSQL on Solaris How To Guide
 - http://www.sun.com/software/solaris/howtoguides/postgresqlhowto.jsp
- Sun Support Service Plans
 - http://www.sun.com/service/osdb/index.xml

Josh Berkus josh.berkus@sun.com
Jim Gates jim.gates@sun.com
Zdenek Kotala zdenek.kotala@sun.com
Robert Lor robert.lor@sun.com